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Figure 1. (a) Mesh models.  (b) Making papercraft toys with a computer.  (c) Papercraft toys of the mesh models. 
 
Abstract 

 
We propose a new method for producing unfolded papercraft 

patterns of rounded toy animal figures from triangulated meshes 
by means of strip-based approximation. Although in principle a 
triangulated model can be unfolded simply by retaining as much 
as possible of its connectivity while checking for intersecting 
triangles in the unfolded plane, creating a pattern with tens of 
thousands of triangles is unrealistic. Our approach is to 
approximate the mesh model by a set of continuous triangle strips 
with no internal vertices. Initially, we subdivide our mesh into 
parts corresponding to the features of the model. We segment 
each part into zonal regions, grouping triangles which are similar 
topological distances from the part boundary. We generate 
triangle strips by simplifying the mesh while retaining the borders 
of the zonal regions and additional cut-lines. The pattern is then 
created simply by unfolding the set of strips. The distinguishing 
feature of our method is that we approximate a mesh model by a 
set of continuous strips, not by other ruled surfaces such as parts 
of cones or cylinders. Thus, the approximated unfolded pattern 
can be generated using only mesh operations and a simple 
unfolding algorithm. Furthermore, a set of strips can be crafted 
just by bending the paper (without breaking edges) and can 
represent smooth features of the original mesh models. 
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1 Introduction 
 

3D figures displayed on a computer screen are just digital data 
stored in a computer - we cannot touch them. Realizing such 
computer models as physical objects is not only useful for 
engineering but is also entertaining in itself. Making papercraft 
from an unfolded pattern is one of the simplest methods of 
achieving this, and is a hobby which many people greatly enjoy. 
As one example of this, the unfolded pattern of the Utah Teapot, a 
well known test dataset, was created by Elber as a keepsake for 
the 25th anniversary of SIGGRAPH [SIGGRAPH 1998].  

Unfoldable surfaces are a subset of ruled surfaces, and methods 
of approximating other surfaces by sets of developable ruled 
surfaces are well-studied [Elber 1995; Pottmann and Farin 1995; 
Hoschek 1998]. These approaches approximate parametric 
surfaces such as B-spline surfaces or rational Bézier surfaces by 
sets of ruled surfaces such as parts of cones or cylinders. The 
method of Chen et al. [1999] adapts such approximations to point 
clouds. However, it is hard to handle free form models of 
triangulated meshes such as Fig.1a with these approaches. 

 Methods for unfolding mesh models have been proposed by 
researchers in the field of mesh parameterization in recent years 
[Sorkine et al. 2002; Lévy et al. 2002; Sheffer 2002], but these 
approaches are not applicable for papercraft because they allow 
distortion of faces.  

Because the Gaussian curvature of ruled surfaces (unfoldable 
surfaces) is zero, use of a curvature-based approach could be 
considered. However partitioning a free-form mesh model by 
means of its curvature is generally difficult. Our method is 
completely new in that it does not rely on curvature and instead 
converts a mesh to a set of strips, which are always unfoldable.  

In principle, making an unfolded pattern from a mesh model 
without distortion is not difficult. We can generate the pattern 
simply by placing triangular faces on a plane, retaining as much as 
possible of its connectivity while checking that the resulting 
triangles do not intersect in the unfolded plane. However, in view 
of the size and intricacy of patterns such as Fig.2, physically 
creating such a pattern is unrealistic (as is assembling one!). 

 
Figure 2. A mesh model and its unfolded pattern (4624 faces). 
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A more practical approach to making papercraft from a mesh 
model is to simplify the model using a mesh optimization method 
and then to unfold. Fig.3 shows an example of this approach. (c) 
is the unfolded pattern of the polyhedron (b) generated by 
simplifying the mesh model (a) using Garland and Heckbert’s 
[1997] method, and (d) is a photo of the crafted model. This 
approach is practical and a commercial system for papercraft that 
generates unfolded patterns by unfolding low-polygonal models 
exists [ABNET Corp. 2003]. However, the papercraft models it 
generates from simple polygonal models become more angular, 
and the smoothness of the surface is lost. 

   
(a)                        (b)                  (c)              (d) 

Figure 3. Making papercraft with a simplified mesh model. 
 

This paper describes and illustrates our method. Section 2 
reviews triangle strips. Section 3 describes our proposed method 
in detail. Section 4 shows our results, including illustrations of 
assembled papercraft toys. Section 5 outlines ideas for future 
work. 

 
2 Triangle strip 

 
A triangle strip, a common concept in graphics APIs [Neider et 

al. 1993], is a sequence of triangles such as the one shown on the 
left of figure in Fig.4a. Unfolding a polyhedron requires cuts, but 
we can easily unfold a triangle strip without cuts (right of Fig.4a) 
as long as the unfolded triangles do not intersect in the plane 
(when they intersect, we must separate them). Triangle strips can 
be connected by branching triangles to form a triangle tree; in 
general, triangle trees can be also unfolded without cuts. More 
generally, a triangle graph including loops can be unfolded by 
adding cuts for loops (Fig.4b). In this paper, we use strip to refer 
to any triangle graph which can be unfolded: triangle strips, 
triangle trees and simple triangle graphs with ‘removable’ loops. 

  

  
Figure 4. Strips and unfolded patterns. 

 
Normally, each edge of an unfolded pattern will be bent when 

the figure is crafted, but sometimes the two mesh triangles are 
almost coplanar and the edge need not be bent, leaving a smooth 
surface in the crafted figure. Avoiding bending in this way also 
helps to reduce crafting time. It is also better if the strips are wide 
– this also helps to reduce crafting time. Hence, one goal of our 
method is to approximate the triangulated mesh model by a set of 
‘smooth and wide’ triangle strips. Although building triangle trees 
from meshes is well studied in the fields of data compression and 
rendering [Taubin and Rossignac 1998; Evans et al. 1996], the 
strips which we want to generate differ from these in that ours are 
generated by changing the geometry and topology of the original 
meshes. Compared with approaches that approximate a model by 
a set of ruled surfaces such as parts of cones or cylinders, our new 
method has the advantage that no approximation by ruled surfaces 
is needed – it is purely a mesh method.  

3 Detailed Method 
 
We propose a method for making papercraft by strip-based 

approximation, and an overview of our method is shown in the top 
half of Fig.10. Fig.10a is a mesh model. We convert it into a set of 
strips (Fig.10f) and unfold these strips (Fig.10i), and then 
manually craft them to produce a figure (Fig.10h). 

To make the strips, we must determine which edges will 
become strip borders (Fig.10e). We call these edges cut-lines - 
they will be cut after the model approximated by a set of strips is 
unfolded. 

Each step of our method is described in detail below. We first 
segment a mesh model into parts (Sec.3.1) and then generate 
zonal regions (Sec.3.2). The borders between zonal regions 
become cut-lines. We add additional cut-lines (Sec.3.3) to ensure 
that important features of the original model are retained. We 
make these cut-lines smooth (Sec.3.4) and then generate strips the 
borders of which correspond to cut-lines by applying mesh 
optimization operations (Sec.3.5). 

Our input models are manifold triangulated meshes, with or 
without borders, with tens of thousands of rather evenly 
distributed triangles. 

 
3.1 Feature Line Extraction and Partitioning 
 

Initially, we segment a mesh model into parts based on features 
to make it easy to craft. For example, when the target figure is an 
animal, we divide it into head, body, arms and legs. Methods for 
dividing a mesh model into parts have been proposed by several 
researchers (e.g. [Garland et al. 2001; Katz and Tal 2003; Lévy et 
al. 2002]); of these, we adopt the method of Lévy et al. Although 
this method was proposed for texture mapping, it is also good for 
papercraft – it detects sharp edges, and the feature boundaries tend 
to coincide with sharp edges whereas feature interiors contain 
smoother edges. This method extracts feature lines: lines with 
sharp edges and which are longer than some predefined length. 
Charts (what we call parts), sets of faces, are seeded with the 
faces whose distances from the feature lines are locally maximal, 
and these charts are expanded simultaneously from their seeds to 
meet each other at feature lines (for details, see [Lévy et al. 2002]). 
The method has parameters that affect the result; determining 
suitable values for these parameters is not straightforward. Rather 
than resort to trial and error to determine appropriate parameter 
values, we first set the parameters to generate small charts and 
then applied the following algorithm to merge them: 

 
1. Select the chart C with the smallest number of triangles. If C 

has more than predefined number of triangles (e.g. 3% of all 
triangles), finish. 

2. For each chart H other than C, count the number of edges 
lying on the border between H and C (excluding the 
extracted feature lines). 

3. Merge C with the chart for which the count is maximal, and 
repeat from step 1. 

 
This operation divides a mesh model into parts, and the 

extracted feature lines tend to lie on the borders between these 
parts. Although Lévy’s original method always produces charts 
which are homeomorphic to a disc, our additions do not always 
preserve this; this does not cause problems for the later steps we 
describe below. Fig.10(1b) shows the parts generated for the mesh 
in (1a) by this method. However, some extracted feature lines may 
not lie on borders, so we add these features to the cut-lines in 
Sec.3.3. 
 

(b) 

(a) 
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3.2 Generation of Zonal Regions 
 

In order to approximate each part generated in Sec.3.1 by a set 
of strips, we segment the part into zonal regions as shown in 
Fig.10(1c). The triangles in each zonal region will be converted to 
a strip (Sec.3.5). 

To generate zonal regions for each part, we assign a value to 
each triangle and segment the part by placing region borders on 
edges according to the values of neighbor triangles. The assigned 
value we use is the topological distance from the nearest part 
border or feature line (as extracted in the previous section) to the 
triangle. Zonal region borders are added along edges that connect 
triangles with assigned values nw and nw+1 (for n=1,2,3,…, and 
w is a positive integer). By this means, we can segment parts into 
zonal regions whose widths are w, leaving innermost internal 
areas. w, the width of zonal regions, affects the accuracy of the 
approximation - smaller w generates more precise regions but 
make it harder to craft the resulting pattern. 

The sizes of the resulting internal areas are unpredictable. Since 
we do not want narrow or tiny, difficult-to-handle pieces in our 
papercraft patterns, after the internal areas are generated, we 
merge those areas by the same algorithm as was previously 
applied to parts in Sec.3.1. For example we can merge those areas 
in which the difference between the minimum and maximum 
values assigned to triangles is smaller than w/3 or which contain 
fewer than 0.5% of all triangles. 

The borders of zonal areas correspond to cut-lines, and we call 
them border cut-lines. 

 
3.3 Addition of Internal Cut-Lines 
 

Our method uses mesh optimization which retains cut-lines (see 
Sec.3.5). If we retain only border cut-lines, internal features may 
disappear (as in Fig.5a). To avoid this, we add extra cut-lines to 
zonal regions to ensure that these features are retained (e.g. the 
center red lines in Fig.5b). Adding cut-lines to a region 
corresponds to adding holes to a strip. The method of Lévy et al. 
generally extracts feature lines that lie on part borders (see 
Sec.3.1), but if there are any feature lines lying in the interior of a 
zonal region - away from the border more than appropriate 
distance (e.g. 0.3w) - we record them as feature cut-lines. 

 

 
                            (a)                                                       (b) 

Figure 5. Mesh simplification without and with feature cut-line. 
 

Additionally, we consider those regions homeomorphic to a 
disc that do not have any feature lines (Fig.6a, left). Even though 
smooth rounded forms are important for representing rounded 
figures such as animal toys, mesh simplification destroys these 
features (Fig.6a) for the same reason as given above. In order to 
avoid this, we apply an algorithm to extract core lines of regions 
homeomorphic to a disc by shrinking their outer loops as follows: 
 
1. Add all triangles in the region to a list T, and make an outer 

loop L of the region that is a list of edges in 
counterclockwise order. 

2. Update L by removing a triangle from T. The triangle to be 
removed is the nearest to the border of the region. The way L 
is updated differs depending on to how the triangle touches L 
(see Fig 7) - Fig.7a to Fig.7f illustrate the various 
possibilities. The thick red lines are edges of the outer loop L 
and the arrows show the direction of the loop. Same-colored 

arrows indicate adjacent edges in L. Triangles in T are shown 
in pink, and the target triangle to be removed is shown in red. 
Fig.7a shows the case where a triangle touches L along a 
single edge, (b) and (c) show the case with two touching 
edges and (d), (e) and (f) the cases with three touching edges. 

3. Repeat step 2 until T is empty. 
 
 

       
                             (a)                                                       (b) 
Figure 6. Mesh simplification without and with internal cut line. 

 

 
               (a)      (b)          (c) 

 
               (d)      (e)          (f) 
 

Figure 7. Rules for updating outer loops. 
 

The red lines in Fig.8a show borders of zonal regions and 
feature cut-lines. The core lines added by the above algorithm are 
shown in Fig.8b. With this algorithm a region loses all of its 
triangles and converges to a set only of edges and their vertices, 
which we call core lines. The algorithm shrinks a region 
continuously from its border without making holes (so the core 
lines do not have loops), to form a tree structure. Since these lines 
would be too complicated to craft, we simplify each core line 
using the following algorithm: 

 
1. Create an edge-vertex tree of the core lines derived from the 

previous algorithm. 
(a) Make a list L of the vertices that are leaves of the edge-

vertex tree. 
(b) Repeatedly remove one vertex in L from the list and 

the core line. When the number of vertices in the core 
line is reduced to a predefined ratio (e.g. 15%), go to 
step 2. If L becomes empty, update the edge-vertex tree 
of the core line and repeat from (a). 

2. If there are any vertices nearer than a predefined distance 
(e.g. 0.3w) to the outer loop, remove the edges that connect 
these vertices from the core line. 

  
Fig.8c shows the result of this algorithm – it can be seen that 

the resulting core lines have been simplified. We call these core 
lines center cut-lines. 

 

 
                (a)                                   (b)                                   (c) 

Figure 8. Generation of center cut-lines 
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3.4 Smoothing of Cutting Lines 
 

In order to make it easy to cut out parts from a sheet of paper 
and to paste them, we smooth all cutting lines (border cut-lines, 
feature cut-lines and center cut-lines) generated in previous 
sections. To do this, we apply both connectivity smoothing and 
geometrical smoothing as described below. 
 
3.4.1 Connectivity smoothing 

 
Connectivity smoothing is illustrated in Fig.9. Where there is a 

triangle (such as the gray triangle in Fig.9a) with two edges on the 
same cut-line, we replace that part of the cut-line by the third edge 
of the triangle as shown in Fig.9b. This replacement is not applied 
to triangles where the cut-line branches out. 

 
(a)             (b) 

Figure 9. Connectivity smoothing 
 

3.4.2 Geometrical Smoothing 
 

In order to make cut-lines smooth, after applying connectivity 
smoothing, we move those vertices on cut-lines which have two 
neighbor vertices on the same cut-line by using the one-
dimensional Laplacian operator shown in equation (1). 

]1[
4
1][

2
1]1[

4
1][ +++−= ipipipip                  (1) 

p[i] is the coordinates of a vertex to be moved, and p[i-1], 
p[i+1] are the coordinates of the neighbor vertices connected to 
p[i] on the cut-line. Repetition of this operation makes the cut-line 
smoother still, but also makes the line shrink. We apply this 
operation just twice, enough to make it smooth without shrinking 
it too much.  

 
3.5 Simplification to Generate Strips 
 

We simplify the mesh model and generate strips by a method of 
constrained mesh simplification that removes all the internal 
vertices in a zonal region while retaining the edges on cut-lines 
extracted by the methods described in the previous sections (see 
Fig.6b). Cohen [1999] has collected several methods for 
simplifying meshes. Of these, we used the mesh simplification 
algorithm proposed by Garland and Heckbert [1997], which uses 
the edge-collapse operation. During this operation, we add a 
check that face normals are not inverted - if such undesirable side-
effects occur, we undo the edge-collapse. The edge-collapse 
operation is repeated as far as it can be applied. After that, if 
vertices still remain that are not on any cut-line, we use a vertex-
removal operation [Turk 1992]. As a result of this simplification, 
we obtain a set of strips which is a simplified mesh with vertices 
only on cut-lines. After simplification, we use an edge-swap 
operation [Hoppe et al. 1993] to make strips smooth. This edge-
swap is applied only to edges that are not on cut-lines and only 
when the second order difference (i.e. the angle between the 
normals, as in [Hubeli and Gross 2001]) becomes smaller. 

 
3.6 Unfolding and Packing 
 

Unfolding a strip is trivial. We place one of the triangles in the 
strip on the plane and recursively add those triangles connected to 

triangles already in the plane. If and when they intersect, we 
divide the unfolded strip into two. 

The problem of packing pieces has been studied elsewhere (see, 
e.g. [Milenkovic 1999]). We do not discuss this problem here, and 
in producing the results shown in the next section we placed the 
pieces manually. 

 
4 Results 
 

Fig.10 shows the various stages of our method applied to a 
bunny mesh model with 19996 triangles (upper), and a rhinoceros 
mesh model with 18496 triangles (lower). Fig.10a is the initial 
mesh, (b) is the result of partitioning and (c) is the result of 
generation of zonal regions. We used 12 and 11 respectively for 
the parameter w (the width of the zonal regions), and merged 
regions smaller than 60 and 250 triangles (we determined these 
parameter values by trial and error). (d) shows cut-lines, added 
feature cut-lines and center cut-lines. (f) shows the set of strips 
generated by mesh simplification and (g) is the model with the 
cut-lines enhanced so as to make it easy to see the strips. (h) and 
Fig.1c are photos of the assembled papercraft toys and (i) is the 
unfolded pattern. We used a cutting machine to cut out the pieces; 
the unfolded patterns were cut from four sheets of A4 paper. We 
assembled the figures using scotch tape (automatically generating 
flaps on cut-lines is straightforward, but we find that using scotch 
tape without flaps is easier than gluing flaps). The heights of the 
papercraft models are 17cm (bunny) and 14cm (rhinoceros), and it 
took 2¼ hours and 3½ hours respectively to assemble them - this 
is about the same as the time taken to craft the simple polygonal 
model in Fig.3 with about 300 faces. As mentioned in Sec.2, if we 
do not have to bend internal edges of strips, we not only generate 
figures with smooth surfaces but also greatly save crafting time, 
and in practice we did not have to bend almost all internal edges. 
Fig.1b shows the equipment required for crafting – note that the 
correspondence between parts of the 3D model and those of the 
pattern is shown by a system implemented on a PC. 

In terms of accuracy, the geometrical error between an input 
mesh model and its simplified model is rather large compared to 
those with other simplification methods. The RMS (root mean 
square) errors as measured by Metro [Cignoni et al. 1998] 
between the original models and those optimized by our method 
are 0.0126 and 0.0113 respectively (size of models are normalized 
to 1). These error values are almost same as those when we 
simplify the original meshes to 270 faces and 200 faces 
respectively using Garland and Heckbert’s [1997] method.  

 
5 Conclusion and Future Work 
 

We proposed a new method for producing unfolded papercraft 
patterns from triangulated meshes by means of strip-based 
approximation. The effectiveness of the method was demonstrated 
by examples that kept the smoothness of original meshes. The 
time consumed in crafting was reasonable. Although the accuracy 
of approximation our method achieves may not appear 
particularly good, the most important criterion is the visual 
difference between an input mesh model and its papercraft figure 
(papercraft figures will usually include additional large 
geometrical errors due to manual assembly). It can be seen that 
judged by this criterion our method works well for both models 
generated originally from ranged data (bunny) and designed 
manually (rhinoceros). 

With our approach, we have to find appropriate parameters by 
trial and error (in practice, this is not difficult), and we cannot 
specify the approximation tolerance to the input mesh model. In 
future, we hope to find method for automatically finding 
applicable parameters for predefined tolerance. Additionally, 
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methods for quantifiably evaluating the generated patterns are 
required. 

Furthermore, when papercraft is designed by humans, thin parts 
of models (such as ears of animals or wings of birds) are 
sometimes simply a single sheet of paper. We should wish to 
enhance our method so that such non-manifold models can also be 
simplified. 
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Figure 10. (a) Initial mesh  (b) Partitions  (c) Zonal regions  (d) Cut-lines  
(e) Smoothed cut-lines  (f) Set of strips  (g) Enhanced cut-lines  (h) Photo of papercraft  (i) Unfolded pattern 


