
Interactive Mesh Fusion Based on Local 3D Metamorphosis

Takashi Kanai
Materials Fabrication Laboratory

RIKEN
kanai@postman.riken.go.jp

Hiromasa Suzuki Jun Mitani Fumihiko Kimura
Department of Precision Engineering

University of Tokyo
fsuzuki/mitani/kimurag@cim.pe.u-tokyo.ac.jp

Abstract
This paper proposes a new mesh modeling scheme, called
mesh fusion, based on three-dimensional (3D) mesh-
based metamorphosis. We establish the attachment from
a part of one mesh to a part of another with smooth
boundaries, employing the traditional cutting and pasting
operation in conjunction with a combination of meshes,
applying the idea of 3D metamorphosis. We also offer
an algorithm for adjusting two boundaries by using the
combination of three geometrical operations rigid trans-
formation, scaling and deformation. Our schematic of-
fers a computation time swift enough that the user can
create various shapes with interactive speed.

Key words: Geometric Modeling, Triangular Mesh, Cut-
ting and Pasting, Metamorphosis, Shortest Path, Defor-
mation.

1 Introduction

Models represented by triangular meshes are widely used
in the Computer Graphics (CG) area. The purpose of
our research is to develop a new method of generat-
ing a model from two existing models (or some portion
thereof) within a frame of mesh-based geometric mod-
eling. This paper focuses particularly on an operation,
called cutting and pasting, in which a part of one mesh
is attached to a certain region of an another. Cutting and
pasting is a basic operation that is usually implemented
on most two-dimensional (2D) drawing and painting soft-
ware.

For 3D models, we should take into account that the
smooth attachment of boundaries between a pasted model
and its base is sometimes necessary. One possible way
to resolve this issue is to apply some functions such as
blending [10] along the boundary, after the union of two
models is generated by set operations [18]. Many of the
commercial 3D modeling systems for CAD/CAM or CG
applications have a set operation function. However, very
few modeling systems also have blending functions for
arbitrary meshes.

Of course, we know that it is easy to apply these op-
erations by using other forms such as meta-balls, soft

objects, and so on [3]. In such representations, various
shapes can be defined by a blend of primitives such as
spheres or ellipsoids, or defined as some other function,
maintaining the smooth attachment of boundaries. Un-
fortunately, these representations do not stand directly the
mesh.

Some published research has focused on cutting and
pasting of 3D models. Ranta et al. [21] propose a feature-
based modeling scheme based on cutting and pasting
and offer a basic algorithm for cutting and pasting be-
tween two solid primitives. Pedersen [20] offers a general
method for cutting implicit surfaces. Chan et al. [4] pro-
pose a GUI-based approach for pasting a B-spline surface
and for the interactive sliding of such a pasted surface on
an another B-spline surface. However, these approaches
are not intended to apply to arbitrary meshes.

Our scheme for cutting and pasting between two
meshes, called mesh fusion, is a type of operation sig-
nificantly different from that of previously proposed ap-
proaches. Our method is based on the idea of 3D mesh-
based metamorphosis [13, 5, 6, 16, 9, 11, 12]. The ba-
sic procedure of this approach is divided into two steps.
In the first step, face correspondences are established be-
tween two meshes by which each point on the face of the
source mesh is mapped to a point on the face of the target
mesh. This step is called the correspondence problem.
The second step, called the interpolation problem, gen-
erates a smooth transition by interpolating corresponding
points from the source to the target positions using those
correspondences. In our scheme, we use Kanai et al.'s
method [11] to address the correspondence problem.

Our major contribution is the development of several
novel methods for resolving the interpolation problem.
From a cutting and pasting point of view, it is neces-
sary that shapes near the boundary gradually shift from
one pasted mesh to the other, and retain, as closely as
possible, their original shape in regions apart from the
boundary. We resolve this issue by modifying the Fusion
Control Function (FCF), which is defined as a parametric
B-spline curve.

Further, to establish a smooth attachment of bound-
aries, we propose an algorithm based on three geomet-

(a)

(c)

(d)

F
�

F
�

H
�

H
�

H
c

M
�

M
�

�F
�

F
c

Corresponding
Vertex pair (CVP)

M
c

(b)

s0 1

f(s)

1

Figure 1: An Overview of mesh fusion.

rical operations, rigid transformation, scaling and defor-
mation, for adjusting the shape of two boundaries. We
can efficiently combine these three operations so that the
deformation of boundaries is minimized.

It is important for the user to be able to define or
modify shapes in the mesh modeling with an interactive
speed. All the algorithms used or proposed in our scheme
are fast enough to satisfy this criterion of interactivity of
the mesh modeling.

2 Mesh fusion using 3D metamorphosis

Given two triangular meshes M��M�, we define a tile
as a sub-region of these meshes F� � M��F� � M�.
We assume that a tile is topologically equivalent to a disk.
We also define �F�� �F� as the boundary of F��F�.

Figure 1 shows an overview of our scheme. Mesh fu-
sion is achieved by the following four steps. First, we
define tiles F��F� in two meshes M��M�. These ex-
tractions are achieved by selecting the same number of
vertices on each mesh. In Figure 1(a), spheres on each
mesh denote some selected vertices. Second, an algo-
rithm is applied to F� so that �F� and �F� are fitted
for smooth attachment (Figure 1(b)). We describe the
relevant details in Section 3. Third, we create convex
polygons in 2D space H��H� as parameterizations of
F��F�, a combined polygon Hc, and then a combined
tile Fc (Figure 1(c)). Fc�Hc� is a supermesh that has the
combined graph structure of F��H�� and F��H��. Fi-
nally, the final shape Mc is created by operating a FCF
(Figure 1(d)). Mc is represented as the form Fc � �F�

(�F� �M� n F�).

2.1 Grouping as a tile
In this subsection, we describe the details of grouping
faces from a mesh M as a tile F . The grouping process
includes two important sub-processes: the vertex corre-
spondence process and the cutting process.

In the vertex correspondence process, the user selects
a vertex from each of two meshes respectively to make a
vertex correspondence. We call each selected vertex cor-
responding vertex (CV), and call a pair of vertices corre-
sponding vertex pair (CVP) (Figure 1(a)). CVP is defined
for the rough specification of attaching two boundaries of
tiles, and is used as the reference for methods described
in Section 2.2 and Section 3. We continue these selecting
operations for some CVPs so that a desired sub-region
on each of two meshes is surrounded by a closed loop of
CVs.

In the cutting process, a sub-region from a mesh is de-
fined according to a closed loop. To achieve this defini-
tion, we need to cut a mesh by curves. A curve should
be on the mesh and its end points are two neighboring
CVs, in a closed loop. We regard the calculation of such
a curve to constitute finding the shortest path between two
vertices. However, exactly locating the shortest path on
the mesh is time-consuming work, and is not necessary
for our purposes [19].

Instead, we use a method similar to that of Lanthier et
al. [15] for calculating a path approximate to the shortest
path between two CVs on a mesh. The difference be-
tween our method and that of Lanthier et al. is that we
adopt an iteration-based method. A shortest path is cal-
culated by selective refinements of sub-graphs which are
composed in part of vertices and edges in M along with
additional vertices and edges. Finding a shortest path can
be achieved solely by the search of sub-graphs and does
not require numerically heavy computations such as the
3D rotations of faces.

Figure 2: Selecting CVs as a counter-clockwise direction.

Some vertices or edges of shortest paths found by an
above algorithm may not be originals of M. If an edge
is not an original edge, a face under such an edge is di-
vided. We call each edge of these shortest paths a bound-
ary edge, and each vertex of paths a boundary vertex.

When all of the shortest paths have been calculated,
a mesh is divided into two sub-regions. To determine
which of the two sub-regions is a tile, we make a cer-
tain rule for selecting CVs: Let a face of M be an outer
direction if it has a counter-clockwise cycle of vertices.
We have to select CVs in a direction the same as those
shown in Figure 2. With such a rule, boundary edges can
all be oriented; that is, start/end vertices of an edge can
be determined. Then the left faces of these oriented edges
are the faces of a tile. These faces can be gathered by a
greedy-like algorithm.

There are two reasons why we adopt the above group-
ing method. One reason is to relieve the user's task for
the grouping. In our method, the user's task consists only
of picking several vertices on the mesh. The other reason
is that the boundaries of the tiles are smooth. Selecting
all the vertices to generate a boundary, via the method
of Gregory [9], is rather cumbersome work for the user.
Furthermore, we note from some experiments that those
boundaries may be milled, which would negatively effect
or hinder the smooth attachment of boundaries described
in a later section.

If a more sophisticated selection of the boundary is
needed, a B-spline curve based approach for calculating
paths, proposed by Krishnamurthy et al. [14], seems to
be more specific than ours, although we have not im-
plemented it. Unfortunately, a path generated by Krish-
namurthy's approach does not pass on a mesh. For our
purposes, a slight modification of the approach would be
necessary.

2.2 Finding face correspondences
From two tiles, face correspondences are generated for
the fusion. We use Kanai et al's method [11] for achiev-

L0

v

l

0

1

1s

t

f �s�

(a) (b)
Figure 3: Fusion control function: (a) The relationship
between an embedding and a unit circle for the parame-
terization. (b) A non-uniform cubic B-spline function as
our FCF.

ing face correspondences. We overview a central portion
of this method. The basic idea is to construct face corre-
spondences by combining two tiles in a common domain.

First, we embed each tile to a regular n-gonal region
H, named an embedding, lying on a unit circle in 2D
space whose center is at the origin. n CVs are positioned
on a circle as vertices of a regular n-gon. The rest of the
vertices in �F are positioned on edges of n-gon in the
same order so that the ratios of mapped edge lengths in
�H are equal to those of their original edge lengths in
�F . Positions of internal vertices in H are located by
an approximate solution of harmonic mapping proposed
by Eck et al. [7]. Second, a combined embedding Hc is
created from those two embeddingsH��H�. After calcu-
lating intersection points between edges of two embed-
dings, faces of Hc are constructed from original vertices,
subdivided edges ofH��H� and some additional vertices
found by intersection computations. Finally, a combined
tileFc is created fromHc. Each vertex in Fc has two 3D
positions; one is on a face of F�, the other on a face of
F�. A position of a vertex in Fc is calculated by a linear
interpolation between those of two vertices.

The final shapeMc is a logical sum of Fc and �F�. To
join Fc and �F� topologically, faces in �F�, neighbor to
� �F�, are divided according to the edges of Fc.

2.3 Controlling the fusion
In this subsection, we present a new method for estab-
lishing mesh fusion. From a cutting and pasting point
of view, it is desirable that shapes near the boundary of
Fc are F�, while those apart from the boundary are F�.
From a metamorphosis point of view, it is desirable that
Fc has an intermediate shape between F� and F�.

Now, we propose a method that meets both of these cri-
teria. It is noted thatHc is mapped onto a circle. Based on
this property, we define a fusion control function (FCF)
that can change the ratio of the fusion between two posi-
tions of each vertex in Fc.

Figure 3(a) shows the relationship between a unit circle
and Hc. Let s � � � l�L be a parameter of a vertex v
in Hc, where L denotes the minimum distance from the
origin of a circle to the boundary (one edge of a regular
n-gon), and where l denotes the minimum distance from
v to the boundary. s has a value between 0 and 1. s of
vertices near the boundary approach 0, and s of vertices
near the origin approach 1. s of all vertices are calculated
only once, as soon as Hc is created.

Figure 3(b) shows a FCF f�s�. FCF is defined as a non-
uniform cubic B-spline curve interpolating four points in
2D space. We define that these points are free to move
under the following conditions: (1) Each of the two end
points is constrained as f�s� � �� f�s� � �. (2) Each
interval at the s axis between two neighboring points is
not less than 0. (3) f�s� is constrained as � � f�s� � �.
It is not always necessary for a FCF to be monotonic.

Let vc be a 3D position of a vertex v in Fc, and let
v��v� be positions of corresponding vertices on F��F�,
respectively. Then vc is calculated as the following equa-
tion:

vc � f�s�v� � ��� f�s��v�� (1)

It seems possible to define other functions that satisfy
these three conditions, though we have defined a FCF as
described above. Particularly on B-spline based curve
definitions, if a further detailed specification of Fc is
needed, it is possible to add free points to our FCF.

Figure 4 demonstrates a simple example as a guideline
for using a FCF. In this figure, a part of a cone is attached
to a part of a sphere, where both boundaries have the same
circle shape. Figure 4(a) shows the result with the case
that FCF is a linear function. Fc gradually shifts from
F� to F� with this setting. Figure 4(b) shows the result
with f�s� � � except near s � �. Cutting and pasting can
be achieved by this setting. Figure 4(c) shows the result
with f ��s� � �. Shapes near the boundary ofFc are those
of F� with this setting. Figure 4 (d) shows the result with
f�s� � ���, which a intermediate shape between F� and
F� is generated in all regions of Fc.

3 The adjustment of boundaries for the fusion

By the method described thus far, two boundaries
�Fc� � �F� are joined topologically. Here, we want to at-
tach two boundaries with different shapes for the general
case. In this section, we describe three geometrical op-
erations and propose an algorithm for the adjustment of
two boundaries geometrically. In each operation, we uti-
lize CVP for the reference of the adjustment because the
use of �F itself (that is, the use of boundary edges in �F)
requires time consuming computations.

Two important conditions are necessary for joining two

M
�

M
�

F
�

F
�

(a)

(b)

(c)

(d)

1

1

1

1

1

1

1

1

0

0

0

0

Figure 4: Various shapes using a FCF.

boundaries smoothly. First, the shapes of two boundaries
are coincident; second, two tangent directions normal to
each boundary are coincident. We deal with the former
issue in this section. The latter issue is discussed in Sec-
tion 5.

3.1 Rigid Transformation
For the adjustment without changing an original shape,
we use a rigid transformation so that �F� adjusts to
�F�. Let p�

i
�p�

i
�i � � � � � n� be each position of CVP

inM��M�. A rotation matrix R and a translation vector
c are found by minimizing the following energy function:

Etrans �

nX
i

��p�i � �Rp�i � c�
���� (2)

v

v
�

p
�
i��

p
�
i��

x
�

i
x
�

i

y
�

i
y
�

i

z
�

i
z
�

i

�F
�

�F
�

l
�

i

l
�

i

di

before deformation after deformation

L
�

i

L
�

i

p
�

i

p
�

i

Figure 5: The deformation of a vertex in F�.

We solve this least square problem by using an algorithm
based on SVD (Singular Value Decomposition) [1].

3.2 Scaling
For an adjustment corresponding to a minor change in an
original shape, we use a scale transformation. A scale
value k is found by minimizing the following energy
function:

Escale �

nX
i

��p�i � kp�i
���� (3)

We solve an equation �Escale��k � � for obtaining k.

3.3 Deformation
For an adjustment corresponding to a more significant
change in an original shape, we use a deformation. It
is desirable here that �F� is deformed so that p�

i
is coin-

cident to p�
i
. We use a line-based deformation approach

similar to 2D image or 3D volumetric deformation ap-
proaches described in a previous study by Beier et al. and
Lerios et al. [2, 17]. With this technique, we define a
potential field based on the mapping from �F� to �F�.
Under this field, all vertices in F� are deformed.

Figure 5 shows our deformation approach for a vertex
in F�. Before the deformation, we define a line Li be-
tween two neighboring CVs, pi and pi�� (bold lines in
Figure 5). Let v be an original position of a deformed
vertex. First, v is transformed to u, a position on the
local coordinate system �x�

i
�y�

i
� z�

i
� defined in L�

i
. u is

scaled to u� by the ratio of lengths of two corresponding
lines, L�

i
and L�

i
. Then, a position v�

i
of the deformation

at each line is calculated by the inverse transformation to
the world coordinate system. A final position v� is calcu-
lated by a weighted sum of these positions. These steps
can be summarized by the following equations:

ui � �x�
i

y�
i

z�
i
��� �v � p�

i
�� (4)

u�
i

�
l�
i

l�
i

ui� (5)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w

d/l

n=0.1
n=0.5
n=1.0
n=5.0

n=10.0
n=30.0
n=50.0

Figure 6: A weight function wi with various values of n.

v�
i

� �x�
i

y�
i

z�
i
�u�

i
� p�

i
� (6)

v� �
�X

i

wi

X
i

wiv
�

i
� (7)

where l�
i
� l�

i
denote each length of L�

i
�L�

i
.

The local coordinate system of each line Li is defined
using the following steps. First, we define a starting point
pi of Li as the origin, and define a unit vector from pi
to pi�� as yi. Next, to make an orthogonal coordinate
system, zi is created by a cross product of a unit vector
from a barycentric of CVs to pi and yi. Finally, xi is
created by a cross product of yi and zi.

A weight function wi, which decides the effect of each
line Li in the deformation, is defined as follows:

wi �

�
� �

di
l�
i

�
�n

� (8)

where di denotes the distance between v and L�
i
. wi is

defined so that the larger line or the shorter di causes a
larger value. Figure 6 shows graphs of a function wi with
various values of n. From these graphs, we can derive
that the larger values of n tend to have a more local ef-
fect for v; that is, wi is rapidly decreased with the larger
di�l

�
i
. We select n � � from our various experiments.

3.4 An algorithm for adjusting boundaries
We apply the following algorithm to F� before finding
face correspondences described in Section 2.2:

STEP1 Apply a rigid transformation once. If an average
of the distance between a transformed CV inF� and
a corresponding CV in F� is within a threshold �,
then go to STEP4.

STEP2 Apply a scaling and a rigid transformation in or-
der. If an average distance as calculated in STEP1
is within �, then go to STEP4. If k � �, then go to
STEP3. Otherwise, repeat STEP2.

STEP3 Apply a deformation.

STEP4 Terminate.

A basic concept of this algorithm is “we wish to deform
an original shape as little as possible”. STEP1 is applied
first for the adjustment of two boundaries that have the
same shape and size. If two boundaries are adjusted in
this step, the remaining steps do not need to be applied.
STEP2 is applied for the adjustment of two boundaries
that have the same shape but different sizes. One problem
arises that this step can be successfully finished, because
this step is an iterative step. In all of our examples, it
can be iterated within five repetitions. STEP3 is applied
only once so that the positions of the corresponding two
CVs are coincident. We found that the amount of the
deformation of a tile is slight, minimized by the previous
steps.

It is very important to note that the above algorithm can
play a role only when there is little modification of shapes
near the boundary. In the case that two tiles have quite
different boundary shapes, and thus a rather large defor-
mation of a tile is needed, it is not appropriate to apply
this algorithm. If we set any value to n in Equation (8), it
is difficult to achieve total control of the shape by using
our deformation approach, though it is simple enough to
adjust shapes near the boundary. In that case, the effect of
the deformation of lines L would not reach those shapes
apart from the boundary when n has the larger value, and
the original shape of a tile would in large degree be lost
when n has the smaller value.

Our current solution for this problem is to bend a tile
F� dramatically so that the boundary of F� is approx-
imately along that of F�, using a method such as FFD
(Free-Form Deformation) [22]. In this bending process,
it is not necessary to adjust shapes or sizes of two bound-
aries exactly, because the above algorithm can accom-
plish this without such troublesome work.

Figure 7 demonstrates these steps of our algorithm for
the adjustment of two boundaries. F� involves a set of
solid characters which is attached to a bent solid plate.
F� is a rectangular region across one of side edges of
a “Bottle” model. Both two boundary shapes are rect-
angles, but their aspect ratios are different. Figure 7(b)
shows the result after STEP1 and STEP2. Figure 7(c)
shows the result of the fusion without applying STEP3.
In this figure, we can find that the shape near the bound-
ary has strong roughness. This is because that two bound-
aries are not adjusted geometrically while these are joined
topologically. Figure 7(d) shows the result of the fusion
with applying STEP3. We can observe that a set of solid
characters is stretched so as to match the boundary of a
pasting region of the bottle, and that two boundaries are

Short. Path (Sec.) Adj. Corres.
M� M� (Sec.) (Sec.)

Fig. 7 2.95 2.77 0.19 0.75
Fig. 8(b)-(c) 0.45 7.05 0.08 0.87
Fig. 8(d)-(e) 0.33 7.05 0.05 0.53

Fig. 9(a) 3.67 0.87 1.03 0.52
Fig. 9(b) 2.32 2.93 0.63 3.53

Table 1: Computational times taken in our examples.

adjusted with geometrical smoothness as a desirable ef-
fect by the deformation.

4 Implementation

We have implemented a prototype system on a graphics
workstation OCTANE SI (MIPS R10000 175MHz CPU).
Our system prepares two display modes. The user can
change each mode by manipulating a toggle switch. One
is for the extraction of tiles, which have two screens: one
displays M�, the other displays M�. In this mode, the
user can select vertices for creating CVs, and can mod-
ify CVs by using a mouse. The other is for the control
of a FCF, which also has two screens: one displays Mc,
the other displays a FCF. If a large deformation of F� is
needed,M� is bent in advance using a FFD operation on
a commercial modeling system (for example, “Deform-
ing with Lattices” operation on SOFTIMAGE 3DTM).

5 Results and discussion

Figure 8 demonstrates two mesh fusion examples. One is
a fusion between a region defined at a nose of a “man-
nequin” model and a cone (8(b)-8(c)). The other is a
fusion between the same region of a mannequin and a
hemisphere (8(d)-8(e)). In this figure, a FCF in Figure
4(b) is used in 8(b) and 8(d), a FCF in 4(c) is used in
8(c), and a FCF at 4(d) is used in 8(e). Each nose in 8(b)
and 8(d) is different from its original cone or hemisphere,
because these original shapes are deformed for the adjust-
ment of boundaries. It is noted that the shape of a cone
only appears in the top of a nose as shown in 8(c). This
is because that the tangent normal to the boundary of an
original nose (F�) has a large effect to the result.

Figure 9 shows two examples of a cutting and pasting.
Figure 9(a) shows an example which the shape near the
front of a “Delorian” model has been replaced to that of
a “Volkswagen” model. Figure 9(b) shows an example
which the front half of a “Helicopter” model has been
replaced by the head of an “Eagle” model. In both exam-
ples, a FCF at Figure 4(b) has been used.

Table 1 shows computation times of the examples de-
scribed in Figure 7-9 which is divided into three terms:
the calculation of all approximate shortest paths per each
mesh (Short. Path), the adjustment of two boundaries
(Adj.) and the search of face correspondences (Corres.) .

M� M� F� (H�) F� (H�) Fc (Hc) Mc

CVPs v f v f v f v f v f v f

Fig. 7 6 1,293 2,582 3,589 7,084 875 1,677 55 74 1,835 3,569 5,141 10,244
Fig. 8(b)-(c) 8 434 864 6,769 13,472 393 760 404 721 2,072 4,041 8,592 16,906
Fig. 8(d)-(e) 8 242 480 6,769 13,472 121 216 452 805 1,682 3,249 8,182 16,059

Fig. 9(a) 7 6,775 13,502 1,300 2,580 521 1,003 62 103 1,502 2,961 2,759 5,470
Fig. 9(b) 5 5,625 11,167 5,188 10,332 1,541 3,045 1,158 2,244 8,325 16,548 12,425 24,666

Table 2: The number of vertices v, faces f , and CVPs in our examples.

Although the time taken about the generation of CVPs by
the user is not included in this table, it is the work only
picking several vertices, then it takes only two or three
minutes in each example. Table 2 shows the number of
vertices and faces inM�,M�, F�, F�, Fc,Mc, and the
number of CVPs.

It can be shown in Table 1 that each algorithm de-
scribed in this paper is accomplished with alacrity, and
the user can modify F interactively. Although modifica-
tion of a CVP requires re-calculation of all of the algo-
rithms in our system, these operations can be carried out
without time consuming work. Each time a free point of
a FCF on the graph is moved, our system calculates the
positions of all vertices in Fc using Equation (1). The
calculation is fast enough to modify a FCF and to visual-
ize the result of Fc interactively.

One merit of this system is that the user need not be
vigilant about the smoothness of boundaries. In partic-
ular, the deformation process described in Section 3.3
does not require that equations for the continuity of the
tangent direction normal to boundaries, such as the cross
boundary derivatives of free-form surfaces, be included
in Equation (4)-(7); the smoothness can be controlled by
a FCF. For example, the tangent direction normal to � �F�

is reflected to that of �Fc if a FCF is designed so as to
be f ���� � � as shown in Figure 4(c). However, such the
smoothness is not always required, as shown in Figure
4(b). Our FCF can control various kinds of attachments.

We have proposed combine-based approach to uni-
formly treat the fusion of meshes which includes the cut-
ting and pasting operation. Because of this, it is poten-
tially problematic that the number of faces in Fc is dra-
matically increased. This results in the bad triangulation
of the combined region of the final result, and hence the
deterioration of its rendering quality can occur. For only
the purpose of cutting and pasting, it is clear that the num-
ber of faces need not be increased anywhere other than
near the boundaries.

One measure that might be taken is to apply a mesh
simplification approach such as [8] after a FCF is modi-
fied. However, it seems that a direct display of such large
meshes is more effective for purposes of interactivity, and
the addition of a simplification approach comes at a rather
high computational cost. If we apply a mesh simplifica-

tion, it is desirable to apply a fast method to be in keep-
ing with the goal of interactive performance; a method
capable of establishing a local control of simplifications
according to the values of a FCF.

6 Conclusion and Future Work

We have introduced a new mesh modeling scheme based
on local 3D metamorphosis. It establishes not only a cut-
ting and pasting operation with the smooth attachment
of boundaries for two meshes, but combines the meshes
with each other. To establish smooth attachment, we have
also presented an algorithm for the adjustment between
the boundaries of two meshes. We have demonstrated
through use of examples, and have shown that each algo-
rithm is fast enough to generate various shapes by modi-
fying CVPs or a FCF interactively.

Our scheme allows users to easily establish a cutting
and pasting operation. We are very interested in an ex-
tension of our scheme that would exploit this new-found
ease, and encourage applications to computer-aided ex-
ploration of design possibilities in the service of indus-
trial design.

7 Acknowledgement

The “mannequin” model is from Graphics and Imaging
Laboratory, University of Washington. The “Delorian”,
“Tiger”, “Bottle”, “Volkswagen”, “Helicopter” and “Ea-
gle” models are courtesy of Viewpoint DataLabs. We
wish to thank Prof. Daniel Cohen-Or, Tel-Aviv Univer-
sity, for making us aware of references regarding a SVD
based rigid transformation algorithm.

A portion of this research was supported by The
Ookawa Foundation for Information and Telecommuni-
cation.

8 References

[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-
squares fitting of two 3-D point sets. IEEE Trans. on
Pattern Analysis and Machine Intelligence, PAMI-
9(5):698–700, Sept. 1987.

[2] T. Beier and S. Neely. Feature-based image meta-
morphosis. In Computer Graphics (Proc. SIG-

GRAPH 92), pages 35–42. ACM Press, New York,
1992.

[3] J. Bloomenthal, editor. Introduction to Implicit Sur-
faces. Morgan Kaufmann Publishers, San Fran-
cisco, Calif., 1997.

[4] L. K. Y. Chan, S. Mann, and R. Bartels. World space
surface pasting. In Proc. Graphics Interface '97,
pages 146–154. Morgan Kaufmann Publishers, San
Francisco, Calif., May 1997.

[5] D. T. Chen, A. State, and D. Banks. Interactive
shape metamorphosis. In Proc. 1995 Sympo. on In-
teractive 3D Graphics, pages 43–44. ACM Press,
New York, 1995.

[6] D. DeCarlo and J. Gallier. Topological evolution
of surfaces. In Proc. Graphics Interface '96, pages
194–203. Morgan Kaufmann Publishers, San Fran-
cisco, Calif., May 1996.

[7] M. Eck, T. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle. Multiresolution
analysis of arbitrary meshes. In Computer Graph-
ics (Proc. SIGGRAPH 95), pages 173–182. ACM
Press, New York, 1995.

[8] M. Garland and P. S. Heckbert. Surface simplifi-
cation using quadric error metrics. In Computer
Graphics (Proc. SIGGRAPH 97), pages 209–216.
ACM Press, New York, 1997.

[9] A. Gregory, A. State, M. Lin, D. Manocha, and
M. Livingston. Feature-based surface decompo-
sition for correspondence and morphing between
polyhedra. In Proc. Computer Animation '98, pages
64–71. IEEE CS Press, Los Alamitos, Calif., June
1998.

[10] J. Hoschek and D. Lasser. Fundamentals of Com-
puter Aided Geometric Design. A K Peters, Natick,
Massachusetts, 1993.

[11] T. Kanai, H. Suzuki, and F. Kimura. Three-
dimensional geometric metamorphosis based on
harmonic maps. The Visual Computer, 14(4):166–
176, 1998.

[12] T. Kanai, H. Suzuki, and F. Kimura. Metamorphosis
of arbitrary triangular meshes with user-specified
correspondence. IEEE Computer Graphics and Ap-
plications, 1999. to appear.

[13] J. R. Kent, W. E. Carlson, and R. E. Parent. Shape
transformation for polyhedral objects. In Computer
Graphics (Proc. SIGGRAPH 92), volume 26, pages
47–54. ACM Press, New York, 1992.

[14] V. Krishnamurthy and M. Levoy. Fitting smooth
surfaces to dense polygon meshes. In Computer

Graphics (Proc. SIGGRAPH 96), pages 313–324.
ACM Press, New York, 1996.

[15] M. Lanthier, A. Maheshwari, and J.-R. Sack. Ap-
proximating weighted shortest paths on polyhedral
surfaces. In Proc. 13th ACM Sympo. on Computa-
tional Geometry, pages 274–283. ACM Press, New
York, June 1997.

[16] F. Lazarus and A. Verroust. Metamorphosis of
cylinder-like objects. J. Visualization and Computer
Animation, 8(3):131–146, July–Sept. 1997.

[17] A. Lerios, C. D. Garfinkle, and M. Levoy. Feature-
Based volume metamorphosis. In Computer Graph-
ics (Proc. SIGGRAPH 95), pages 449–456. ACM
Press, New York, 1995.

[18] M. Mäntylä. An Introduction to Solid Model-
ing. Computer Science Press, Rockville, Maryland,
1988.

[19] J. S. B. Mitchell, D. M. Mount, and C. H. Papadim-
itriou. The discrete geodesic problem. SIAM J.
Computing, 16(4):647–668, 1987.

[20] H. K. Pedersen. Decorating implicit surfaces. In
Computer Graphics (Proc. SIGGRAPH 95), pages
291–300. ACM Press, New York, 1995.

[21] M. Ranta, M. Inui, F. Kimura, and M. Mäntylä. Cut
and paste based modeling with boundary features.
In Proc. 2nd Sympo. on Solid Modeling and Ap-
plications, pages 303–312. ACM Press, New York,
1993.

[22] T. W. Sederberg and S. R. Parry. Free-form defor-
mation of solid geometric models. In Computer
Graphics (Proc. SIGGRAPH 86), pages 151–160.
ACM Press, New York, 1986.

(a) (b) (c) (d)
Figure 7: The adjustment of two boundaries using our algorithm.

(a) (b) (c) (d) (e)
Figure 8: Various fusion results about a nose of “mannequin”.

M
�

M
�

M
�

M
�

(a) (b)
Figure 9: Fusion results as the example of cutting and pasting: (a) “Delowagen”. (b) “Washicopter” (“Washi” in
Japanese means “Eagle”).

