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Abstract  Origami is known as a Japanese art and play that creates a shape by folding 
a square sheet of paper. Before folding Origami, we have to know the process of it. 
Although Orizu (a diagram that presents the way of folding) or movies are used as 
instruction manuals usually, the view points of them are fixed and we cannot change 
them. So, it is sometimes difficult to understand the process of folding with these 
manuals. To solve this problem, 3D CG technology can be used. In this paper, we 
propose the methods for generating the 3D Origami model and the animation using 
spring-mass models. We propose two different models and we call them the 
spring-mesh model and the spring-hinge model. As these models can represent flexible 
models, it is possible to simulate non-Rigid Origami. The spring-mesh model is an 
Origami model that represents faces with spring networks and the spring-hinge model is 
a model that represents all hinges with springs and faces with rigid polygons. We 
compared these models and studied each characteristic.We also propose a method for 
generating seamless 3D Origami animation. In our method, the positions of faces are 
generated by key-frame interpolation and then revisions are added to them. We made 
some 3D Origami animations with our method, and we found that our method could 
generate natural movement of flaps in the animation. 
Keywords  Origami, Spring-mass model, simulation, animation 
 

1. Introduction 
Origami is known as a Japanese art and 

play that creates a shape by folding a square 
sheet of paper. Since folding a square is 
compatible with geometrical problems, many 
studies about Origami had been done in the 
field of mathematics. The fruits of the studies 
have been applied to recent engineering works 
such as designing foldable structures. We can 
say that Origami offersus various possibilities. 

Before folding Origami, we have to know 
the process of it. Although Orizu (a diagram 
that presents the way of folding) or movies are 
used as instruction manuals usually, the view 
points of them are fixed and we cannot change 
them. So, it is sometimes difficult to 
understand the process of folding with these 
manuals. To solve this problem, it is required to 
view the folding process from arbitrary angles. 
This may be achieved by using 3D CG 

technology. In this paper, we propose a method 
for generating the 3D Origami model and the 
animation.  

In the past, some methods were proposed 
that simulated Origami folding by assuming 
that Origami was constructed with rigid planes 
and hinges, called Rigid Origami model. In this 
model, the shape of folding Origami is 
calculated in the manner of rigid kinematics. 
Although this model works fine with limited 
shapes, there are many cases that cannot be 
folded rigidly.  

To solve this problem, we apply the 
spring-mass model[1]. As our model can 
represent a flexible model, it is possible to 
simulate non-Rigid Origami. The spring-mass 
model requires appropriate spring arrangements 
and the setting of parameters. We propose two 
different models and we call them the 
spring-mesh model and the spring-hinge model 



(Fig 1). The spring-mesh model is an Origami 
model that represents faces with spring 
networks. The spring-hinge model is a model 
that represents all hinges with springs and faces 
with rigid polygons. We compared these 
models and studied each characteristic. 

We also propose a method for generating 
seamless 3D Origami animation. The motions 
of flaps during folding operation are very 
complex and we cannot get the animation by 
simple key-frame approach. In our method, the 
positions of flaps are generated by key-frame 
interpolation and then revisions are added to 
them. The revisions are calculated by using 
spring-mass simulation during the animation.  

We made some 3D Origami animations 
with our methodand we found that our method 
can generate natural movement of flaps during 
the animation.  

We introduce related works in chapter 2 
and describe the spring-hinge model in chapter 

3. In chapter 4, we discuss the animation of 
Origami and reach the conclusion in chapter 5.  
 
2. Related works 

There are various ways of approach to 
model the restriction and the transformation of 
Origami. The famous simulating system of 
Origami, called "Origami Simulation" by 
Miyazaki[2], applied the 3D system controlled 
by pointing devices (drag-and -drop function). 
The fold line isautomatically created when a 
corner of the paper is pointed with a cursor and 
then moved, which can move flexibly and the 
face attached to this follows the movement of 
the cursor. Further, since the system records 
each folding process and the shapes of the 
paper, it can reproduce the series of process 
with 3D animation afterwards. Thesefold lines, 
however, can only be created on the same plane. 
It means that the fold lines across the several 
planes cannot be simulated precisely, especially 
under the condition of representing the 
complicated folding process caused by the 
complex interaction of each plane. 

Tachi suggests one method called Rigid 
Origami Model regarding the folding paper as 
the rigid panel and the flexible hinge part[3]. 
This model enables us to create the animation 
that all of the planes can be moved at a time by 
solving problems of rigid kinematics. On the 
other hand, there are some Origami peaces they 
cannot be folded rigidly and this system cannot 
treat these cases.  

Although the key frame method is used to 
fix the time for the animation which divides the 
process into several frames and calculates the 
shapes of the mean point at each frame, the 
simple use of this method cannot avoid making 
additional errors when target object is Origami 
since the transformation of the interacting 
works like Origami cannot be estimated by 
simple interpolation. 

Fujii created the 3D animation of Origami 
folding using the VRML system[4]. However, 
handling complex models such as that multiple 
planes need to move toward different directions 
at a time are still difficult. 

In this way, it turns out that the flexibility 
of paper is the important key to realize the 
natural moving in Origami animation. 
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Fig 1:Examples of the spring-mesh model and the 
spring-hinge model. 



 
3. Spring-hinge model 

In this paper, we regard a plane surrounded 
by folding lines or boundary lines as a 
two-dimensional rigid plane and propose the 
model in which vertices correspondent to each 
plane are connected with springs. We call this 
model “the spring-hinge model” and describe 
the details in the following subsections. 

 
3.1. Simulation 

We define an-sided polygonal planeRin 
three-dimensional space as a set of 4x4 affine 
matrix M and a polygon P placed on 
two-dimensional plane. M contains a transform 
vector T=(tx,ty,tz) and a 3x3 rotation matrix Q. 
The polygon P is consisted from n 
two-dimensional coordinates of the unfolded 
pattern. We assume the scale factor is 1. The 
coordinates of i-th vertices of R can be 
expressed as follows. 
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Each polygonis designated to be connected 
as much as possible by adjusting the value of 
the affine matrixduring the movement. To put 
it concretely, vertices which should be 
topologically connected are attached with the 
springs having initial length of 0 (Fig 1). The 
force fij acting on the vertices of the polygon 
Ri is described as follows. 

 

€ 

fij = k( ′ r j − rj ) + Dvij    (2) 
 
Here, k, D and vij indicate the spring 

constant, the damper constant, and the relative 
speed of the vertex ri to the vertex r’j 
respectively and r’j shows the center of mass of 
the vertex which should be existed within the 
same coordinates. The force added to the 
polygon Ri by every spring connected to this 
polygon and the torque τi around the center of 
mass are described as follows [5]. 

 

€ 

Fi = fij
j
∑ −mig   (3) 

€ 

τ i = (roi × f ij )
j
∑ − roi ×mig   (4) 

mi, g and roi in the equation indicate the 
mass of the polygon Ri, the gravitational 
acceleration, and the relative coordinates of the 
vertex ri  considered from the center of mass, 
respectively. Each of Fi and τi shows the 
three-dimensional vector and τi / |τi| indicates 
the axis of rotation, while |τi| shows the rotation 
angle. By giving a time integral to these 
equation based on Euler method, the speed vi 
and the location ri of the polygon, the angle 
speed ωi, and the angle λi are calculated as 
follows. 
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υ i(t + Δt) =υ i(t) +
Fi(t)
mi

Δt   (5) 
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ri(t + Δt) = ri(t) +υ i(t)Δt   (6) 
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ω i(t + Δt) =ω i(t) +
τ i(t)
Ii

Δt   (7) 

€ 

λi(t + Δt) = λ(t) +ω i(t)Δt   (8) 
 

Ii indicates the value of inertia tensor of the 
polygon Ri. Translation ri and rotation λi are 
composed into a 4x4 matrix Пi as follows.  
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s in (10) shows the ratio of rotation 
components held in the matrix and the extent is 
0 ≤ s ≤ 1. Our system designates 0.7 since 
rotation component takes high percentage in 
Origami movement. Q is the function that 
replaces rotational vector with a 3x3 matrix, 
which is defined as the following equation [5]. 
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Affine matrix Mi(t+∆t) of the polygon Ri is 
calculated with the following equation.  

 

€ 

M i(t + Δt) =Π iM i(t)    (12) 

 
By alternately calculating the above 

equation in a very short interval, the moved 
positionof the polygon is calculated. 

 
3.2. Evaluation 

We implemented the simulation programs 
of both of “the spring-mesh model” and “the 
spring-hinge model” with Java and used 
Java3D Library for 3D expression. We 
compared the degree of their convergence after 

transformation by inputting the transformed 
figures such as Figure 3 that have the crease 
patterns of Figure 2, respectively and also 
calculating the angle θ of the opposite plane. 
The angle of θ is expected to convergeto 90 
degrees as time passes.  

The paper is a unit square and the spring 
constant, the damper constant, and the time 
interval are designated as 1, 1, and 0.01, 
respectively. Though the concept of a particle 
is different between these models, the total 
mass existing in the paper is adjusted to 1. That 
is, the weight of the vertex in the spring-mesh 
model is 1/n and that of the polygon in the 
spring-hinge model is Si, same value with area. 

The following computational environments 
are used for the experiment. 

 
3.3. Result 

Figure 4 and 5 show the graphed time 
variation of θ. The following tendency can be 
read from this graph. 
1. The solution converges in faster speed in 

the spring-mesh model. 
2. The time needed for one step is shorter in 

the spring-mesh model. 
3. The spring-hinge model converges the 

solution to the expected value. 
We can confirm from the graph A and B 

that the spring-mesh model converges rapidly. 
The short interval of the marker tells us that the 
time per one step is short. On the other hand, 
though the operation time is long on the 
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Fig 2:The crease patterns of our evaluation 

  

Transformed Pattern A Transformed Pattern B 

Fig 3:Transformed patterns that they folded  
at the crease line with 90° 

 
Fig 4: The graph of the angle θ 
of the Transformed Pattern A 

 
Fig 5: The graph of the angle θ 
of the Transformed Pattern B 

Model Apple MacPro 
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RAM PC2-5300 DDR2-FBDIMM (667MHz 9GB) 
GPU NVIDIA GeForce 7300GT (VRAM: 256MB) 

OS Mac OS X 10.5.1  
JDK 1.5.0_13 + Java3D 1.5.1 
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－ spring-hinge 

－ spring-mesh 
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grounds that the algorithm of the spring-hinge 
model is more complicated than that of the 
spring-mesh model, the solution converges in 
fewer repetitive times. Moreover, it becomes 
clear that the ideal solution close to 90 degrees 
can be obtained in the spring-hinge model. 
 
4. Animation 

The key frame method is generally used 
for the creation of the animation which requires 
predefined shapes and time intervals. Though 
the key frame method can create the animation 
with less input, it brings about the problem that 
we need to adjust the key frame and the 
interpolation function through trial and error. 
Without this correction, it often creates the 
unnatural result such as that the figure of the 
plane may be twisted or some space may be 
found between the polygons, if the interactive 
transformation like Origami, especially, is 
interpolated with the simple function. In this 
chapter, we discuss how to solve this problem. 

 
4.1. Method 

When some space is found between the 
polygons at the time of interpolating of the key 
frame, we propose to adopt the method to fill in 
the space caused by the stretch of the spring 
among vertices, which is described in the 
chapter 3, at every frame. The flow of our 
method is as follows. 
1. Based on the next key frame and the current 

intermediateframe, calculate the position 
and the direction of the mass in the 
intermediate frame by interpolation. 

2. Bring the position of the plane close to the 
correct position using the spring force. 
The quaternion of the mass position of the 

polygon and the direction of movement is 
supposed to be linearly interpolated here.  
 
4.2. Evaluation 

We prepared the three frames expressing 
Petal fold as shown in Figure 6 and with 
dividing them into 60 parts, we calculated the 
mass position and the direction of the polygon 
by the simple linear interpolation. After that, 
we compared the result in which rendering is 
done using each frame without any correction 
and that in which rendering is done after the 
error correction using the spring operation of 

ten times. 
 

4.3. Result 
The result obtained from the above 

experiment is shown in Figure 7 and 8. In the 
simple linear interpolation, penetrationsof the 
polygons from the frame 2 to the frame 3 and 
the space between the polygons can be seen. 
On the contrary, we see no penetrations of the 
polygons and hardly find any space in Figure 8 
which was corrected with the spring operation 
of ten times. We think that such a little space 
can be filled with the simple filling process at 
the time of rendering. The time needed for the 
spring operation was 4-7ms and it finished in 
half time of 16.67ms or less which is the 
general frame interval of 60fps CG animation. 
We can think that the space can be made 
smaller with longer operation time.  

 
 

5. Conclusion 
In chapter 3, we proposed “the 

spring-hinge model” based on the spring-mass 
model and compared it with the existing 
method of “the spring-mesh model.” By the 
experiment, it became clear that the 
spring-mesh model can calculate in higher 
speed, while the weakness for the twists was 
confirmed. Moreover, in this spring-mesh 
model, it is supposed that the calculation 
becomes difficult when we try to add collision 
detection of the polygonsbecause of the twists 
of it. In the spring-hinge model, as the 
polygons are always confirmed to be flat, it will 
be possible to add collision detection with 
adding thickness to the plane.  

In chapter 4, we proposed the method to 
animate the process for transformation of 
Origami with 3DCG by the key frame 
interpolation. As each polygon of Origami 
makes transformation with complicatedly 
affecting each other, we need to adjust the 
motion at all times in the existing method. By 
using our method, the natural and smooth 
animation can be created by a little information. 
But in case of the complicated figure, it 
sometimes occurs that the created animation 
becomes unnatural because the correction to 
the interpolated value is insufficient. The closer 
interpolation function to the transformation of 



Origami is needed to be found. 
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Fig 6: The key-frames 

 

    
 

     
Fig 7: The positions of flaps generated by simple key-frame interpolation. 

 

    
 

     
Fig 8:  The positions of polygons generated by key-frame interpolation and then 

revisions are added to them. 


