
 1

Making Papercraft Toys from Meshes
using Strip-based Approximate Unfolding

 Jun Mitani* Hiromasa Suzuki†

University of Tokyo

 (a) (b) (c)

Figure 1. (a) Mesh models. (b) Making papercraft toys with a computer. (c) Papercraft toys of the mesh models.

Abstract

We propose a new method for producing unfolded papercraft

patterns of rounded toy animal figures from triangulated meshes
by means of strip-based approximation. Although in principle a
triangulated model can be unfolded simply by retaining as much
as possible of its connectivity while checking for intersecting
triangles in the unfolded plane, creating a pattern with tens of
thousands of triangles is unrealistic. Our approach is to
approximate the mesh model by a set of continuous triangle strips
with no internal vertices. Initially, we subdivide our mesh into
parts corresponding to the features of the model. We segment
each part into zonal regions, grouping triangles which are similar
topological distances from the part boundary. We generate
triangle strips by simplifying the mesh while retaining the borders
of the zonal regions and additional cut-lines. The pattern is then
created simply by unfolding the set of strips. The distinguishing
feature of our method is that we approximate a mesh model by a
set of continuous strips, not by other ruled surfaces such as parts
of cones or cylinders. Thus, the approximated unfolded pattern
can be generated using only mesh operations and a simple
unfolding algorithm. Furthermore, a set of strips can be crafted
just by bending the paper (without breaking edges) and can
represent smooth features of the original mesh models.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling -- Geometric algorithms,
languages, and systems

Keywords: Mesh, Simplification, Unfold, Papercraft

--

*Currently with RIKEN (The Institute of Physical and Chemical
Research); jmitani@riken.jp
†suzuki@den.rcast.u-tokyo.ac.jp
*†http://www.den.rcast.u-tokyo.ac.jp/~{mitani,suzuki}/

1 Introduction

3D figures displayed on a computer screen are just digital data
stored in a computer - we cannot touch them. Realizing such
computer models as physical objects is not only useful for
engineering but is also entertaining in itself. Making papercraft
from an unfolded pattern is one of the simplest methods of
achieving this, and is a hobby which many people greatly enjoy.
As one example of this, the unfolded pattern of the Utah Teapot, a
well known test dataset, was created by Elber as a keepsake for
the 25th anniversary of SIGGRAPH [SIGGRAPH 1998].

Unfoldable surfaces are a subset of ruled surfaces, and methods
of approximating other surfaces by sets of developable ruled
surfaces are well-studied [Elber 1995; Pottmann and Farin 1995;
Hoschek 1998]. These approaches approximate parametric
surfaces such as B-spline surfaces or rational Bézier surfaces by
sets of ruled surfaces such as parts of cones or cylinders. The
method of Chen et al. [1999] adapts such approximations to point
clouds. However, it is hard to handle free form models of
triangulated meshes such as Fig.1a with these approaches.

 Methods for unfolding mesh models have been proposed by
researchers in the field of mesh parameterization in recent years
[Sorkine et al. 2002; Lévy et al. 2002; Sheffer 2002], but these
approaches are not applicable for papercraft because they allow
distortion of faces.

Because the Gaussian curvature of ruled surfaces (unfoldable
surfaces) is zero, use of a curvature-based approach could be
considered. However partitioning a free-form mesh model by
means of its curvature is generally difficult. Our method is
completely new in that it does not rely on curvature and instead
converts a mesh to a set of strips, which are always unfoldable.

In principle, making an unfolded pattern from a mesh model
without distortion is not difficult. We can generate the pattern
simply by placing triangular faces on a plane, retaining as much as
possible of its connectivity while checking that the resulting
triangles do not intersect in the unfolded plane. However, in view
of the size and intricacy of patterns such as Fig.2, physically
creating such a pattern is unrealistic (as is assembling one!).

Figure 2. A mesh model and its unfolded pattern (4624 faces).

 2

A more practical approach to making papercraft from a mesh
model is to simplify the model using a mesh optimization method
and then to unfold. Fig.3 shows an example of this approach. (c)
is the unfolded pattern of the polyhedron (b) generated by
simplifying the mesh model (a) using Garland and Heckbert’s
[1997] method, and (d) is a photo of the crafted model. This
approach is practical and a commercial system for papercraft that
generates unfolded patterns by unfolding low-polygonal models
exists [ABNET Corp. 2003]. However, the papercraft models it
generates from simple polygonal models become more angular,
and the smoothness of the surface is lost.

(a) (b) (c) (d)

Figure 3. Making papercraft with a simplified mesh model.

This paper describes and illustrates our method. Section 2
reviews triangle strips. Section 3 describes our proposed method
in detail. Section 4 shows our results, including illustrations of
assembled papercraft toys. Section 5 outlines ideas for future
work.

2 Triangle strip

A triangle strip, a common concept in graphics APIs [Neider et

al. 1993], is a sequence of triangles such as the one shown on the
left of figure in Fig.4a. Unfolding a polyhedron requires cuts, but
we can easily unfold a triangle strip without cuts (right of Fig.4a)
as long as the unfolded triangles do not intersect in the plane
(when they intersect, we must separate them). Triangle strips can
be connected by branching triangles to form a triangle tree; in
general, triangle trees can be also unfolded without cuts. More
generally, a triangle graph including loops can be unfolded by
adding cuts for loops (Fig.4b). In this paper, we use strip to refer
to any triangle graph which can be unfolded: triangle strips,
triangle trees and simple triangle graphs with ‘removable’ loops.

Figure 4. Strips and unfolded patterns.

Normally, each edge of an unfolded pattern will be bent when

the figure is crafted, but sometimes the two mesh triangles are
almost coplanar and the edge need not be bent, leaving a smooth
surface in the crafted figure. Avoiding bending in this way also
helps to reduce crafting time. It is also better if the strips are wide
– this also helps to reduce crafting time. Hence, one goal of our
method is to approximate the triangulated mesh model by a set of
‘smooth and wide’ triangle strips. Although building triangle trees
from meshes is well studied in the fields of data compression and
rendering [Taubin and Rossignac 1998; Evans et al. 1996], the
strips which we want to generate differ from these in that ours are
generated by changing the geometry and topology of the original
meshes. Compared with approaches that approximate a model by
a set of ruled surfaces such as parts of cones or cylinders, our new
method has the advantage that no approximation by ruled surfaces
is needed – it is purely a mesh method.

3 Detailed Method

We propose a method for making papercraft by strip-based

approximation, and an overview of our method is shown in the top
half of Fig.10. Fig.10a is a mesh model. We convert it into a set of
strips (Fig.10f) and unfold these strips (Fig.10i), and then
manually craft them to produce a figure (Fig.10h).

To make the strips, we must determine which edges will
become strip borders (Fig.10e). We call these edges cut-lines -
they will be cut after the model approximated by a set of strips is
unfolded.

Each step of our method is described in detail below. We first
segment a mesh model into parts (Sec.3.1) and then generate
zonal regions (Sec.3.2). The borders between zonal regions
become cut-lines. We add additional cut-lines (Sec.3.3) to ensure
that important features of the original model are retained. We
make these cut-lines smooth (Sec.3.4) and then generate strips the
borders of which correspond to cut-lines by applying mesh
optimization operations (Sec.3.5).

Our input models are manifold triangulated meshes, with or
without borders, with tens of thousands of rather evenly
distributed triangles.

3.1 Feature Line Extraction and Partitioning

Initially, we segment a mesh model into parts based on features
to make it easy to craft. For example, when the target figure is an
animal, we divide it into head, body, arms and legs. Methods for
dividing a mesh model into parts have been proposed by several
researchers (e.g. [Garland et al. 2001; Katz and Tal 2003; Lévy et
al. 2002]); of these, we adopt the method of Lévy et al. Although
this method was proposed for texture mapping, it is also good for
papercraft – it detects sharp edges, and the feature boundaries tend
to coincide with sharp edges whereas feature interiors contain
smoother edges. This method extracts feature lines: lines with
sharp edges and which are longer than some predefined length.
Charts (what we call parts), sets of faces, are seeded with the
faces whose distances from the feature lines are locally maximal,
and these charts are expanded simultaneously from their seeds to
meet each other at feature lines (for details, see [Lévy et al. 2002]).
The method has parameters that affect the result; determining
suitable values for these parameters is not straightforward. Rather
than resort to trial and error to determine appropriate parameter
values, we first set the parameters to generate small charts and
then applied the following algorithm to merge them:

1. Select the chart C with the smallest number of triangles. If C

has more than predefined number of triangles (e.g. 3% of all
triangles), finish.

2. For each chart H other than C, count the number of edges
lying on the border between H and C (excluding the
extracted feature lines).

3. Merge C with the chart for which the count is maximal, and
repeat from step 1.

This operation divides a mesh model into parts, and the

extracted feature lines tend to lie on the borders between these
parts. Although Lévy’s original method always produces charts
which are homeomorphic to a disc, our additions do not always
preserve this; this does not cause problems for the later steps we
describe below. Fig.10(1b) shows the parts generated for the mesh
in (1a) by this method. However, some extracted feature lines may
not lie on borders, so we add these features to the cut-lines in
Sec.3.3.

(b)

(a)

 3

3.2 Generation of Zonal Regions

In order to approximate each part generated in Sec.3.1 by a set
of strips, we segment the part into zonal regions as shown in
Fig.10(1c). The triangles in each zonal region will be converted to
a strip (Sec.3.5).

To generate zonal regions for each part, we assign a value to
each triangle and segment the part by placing region borders on
edges according to the values of neighbor triangles. The assigned
value we use is the topological distance from the nearest part
border or feature line (as extracted in the previous section) to the
triangle. Zonal region borders are added along edges that connect
triangles with assigned values nw and nw+1 (for n=1,2,3,…, and
w is a positive integer). By this means, we can segment parts into
zonal regions whose widths are w, leaving innermost internal
areas. w, the width of zonal regions, affects the accuracy of the
approximation - smaller w generates more precise regions but
make it harder to craft the resulting pattern.

The sizes of the resulting internal areas are unpredictable. Since
we do not want narrow or tiny, difficult-to-handle pieces in our
papercraft patterns, after the internal areas are generated, we
merge those areas by the same algorithm as was previously
applied to parts in Sec.3.1. For example we can merge those areas
in which the difference between the minimum and maximum
values assigned to triangles is smaller than w/3 or which contain
fewer than 0.5% of all triangles.

The borders of zonal areas correspond to cut-lines, and we call
them border cut-lines.

3.3 Addition of Internal Cut-Lines

Our method uses mesh optimization which retains cut-lines (see
Sec.3.5). If we retain only border cut-lines, internal features may
disappear (as in Fig.5a). To avoid this, we add extra cut-lines to
zonal regions to ensure that these features are retained (e.g. the
center red lines in Fig.5b). Adding cut-lines to a region
corresponds to adding holes to a strip. The method of Lévy et al.
generally extracts feature lines that lie on part borders (see
Sec.3.1), but if there are any feature lines lying in the interior of a
zonal region - away from the border more than appropriate
distance (e.g. 0.3w) - we record them as feature cut-lines.

 (a) (b)

Figure 5. Mesh simplification without and with feature cut-line.

Additionally, we consider those regions homeomorphic to a
disc that do not have any feature lines (Fig.6a, left). Even though
smooth rounded forms are important for representing rounded
figures such as animal toys, mesh simplification destroys these
features (Fig.6a) for the same reason as given above. In order to
avoid this, we apply an algorithm to extract core lines of regions
homeomorphic to a disc by shrinking their outer loops as follows:

1. Add all triangles in the region to a list T, and make an outer

loop L of the region that is a list of edges in
counterclockwise order.

2. Update L by removing a triangle from T. The triangle to be
removed is the nearest to the border of the region. The way L
is updated differs depending on to how the triangle touches L
(see Fig 7) - Fig.7a to Fig.7f illustrate the various
possibilities. The thick red lines are edges of the outer loop L
and the arrows show the direction of the loop. Same-colored

arrows indicate adjacent edges in L. Triangles in T are shown
in pink, and the target triangle to be removed is shown in red.
Fig.7a shows the case where a triangle touches L along a
single edge, (b) and (c) show the case with two touching
edges and (d), (e) and (f) the cases with three touching edges.

3. Repeat step 2 until T is empty.

 (a) (b)
Figure 6. Mesh simplification without and with internal cut line.

 (a) (b) (c)

 (d) (e) (f)

Figure 7. Rules for updating outer loops.

The red lines in Fig.8a show borders of zonal regions and
feature cut-lines. The core lines added by the above algorithm are
shown in Fig.8b. With this algorithm a region loses all of its
triangles and converges to a set only of edges and their vertices,
which we call core lines. The algorithm shrinks a region
continuously from its border without making holes (so the core
lines do not have loops), to form a tree structure. Since these lines
would be too complicated to craft, we simplify each core line
using the following algorithm:

1. Create an edge-vertex tree of the core lines derived from the

previous algorithm.
(a) Make a list L of the vertices that are leaves of the edge-

vertex tree.
(b) Repeatedly remove one vertex in L from the list and

the core line. When the number of vertices in the core
line is reduced to a predefined ratio (e.g. 15%), go to
step 2. If L becomes empty, update the edge-vertex tree
of the core line and repeat from (a).

2. If there are any vertices nearer than a predefined distance
(e.g. 0.3w) to the outer loop, remove the edges that connect
these vertices from the core line.

Fig.8c shows the result of this algorithm – it can be seen that

the resulting core lines have been simplified. We call these core
lines center cut-lines.

 (a) (b) (c)

Figure 8. Generation of center cut-lines

 4

3.4 Smoothing of Cutting Lines

In order to make it easy to cut out parts from a sheet of paper
and to paste them, we smooth all cutting lines (border cut-lines,
feature cut-lines and center cut-lines) generated in previous
sections. To do this, we apply both connectivity smoothing and
geometrical smoothing as described below.

3.4.1 Connectivity smoothing

Connectivity smoothing is illustrated in Fig.9. Where there is a

triangle (such as the gray triangle in Fig.9a) with two edges on the
same cut-line, we replace that part of the cut-line by the third edge
of the triangle as shown in Fig.9b. This replacement is not applied
to triangles where the cut-line branches out.

(a) (b)

Figure 9. Connectivity smoothing

3.4.2 Geometrical Smoothing

In order to make cut-lines smooth, after applying connectivity
smoothing, we move those vertices on cut-lines which have two
neighbor vertices on the same cut-line by using the one-
dimensional Laplacian operator shown in equation (1).

]1[
4
1][

2
1]1[

4
1][+++−= ipipipip (1)

p[i] is the coordinates of a vertex to be moved, and p[i-1],
p[i+1] are the coordinates of the neighbor vertices connected to
p[i] on the cut-line. Repetition of this operation makes the cut-line
smoother still, but also makes the line shrink. We apply this
operation just twice, enough to make it smooth without shrinking
it too much.

3.5 Simplification to Generate Strips

We simplify the mesh model and generate strips by a method of
constrained mesh simplification that removes all the internal
vertices in a zonal region while retaining the edges on cut-lines
extracted by the methods described in the previous sections (see
Fig.6b). Cohen [1999] has collected several methods for
simplifying meshes. Of these, we used the mesh simplification
algorithm proposed by Garland and Heckbert [1997], which uses
the edge-collapse operation. During this operation, we add a
check that face normals are not inverted - if such undesirable side-
effects occur, we undo the edge-collapse. The edge-collapse
operation is repeated as far as it can be applied. After that, if
vertices still remain that are not on any cut-line, we use a vertex-
removal operation [Turk 1992]. As a result of this simplification,
we obtain a set of strips which is a simplified mesh with vertices
only on cut-lines. After simplification, we use an edge-swap
operation [Hoppe et al. 1993] to make strips smooth. This edge-
swap is applied only to edges that are not on cut-lines and only
when the second order difference (i.e. the angle between the
normals, as in [Hubeli and Gross 2001]) becomes smaller.

3.6 Unfolding and Packing

Unfolding a strip is trivial. We place one of the triangles in the
strip on the plane and recursively add those triangles connected to

triangles already in the plane. If and when they intersect, we
divide the unfolded strip into two.

The problem of packing pieces has been studied elsewhere (see,
e.g. [Milenkovic 1999]). We do not discuss this problem here, and
in producing the results shown in the next section we placed the
pieces manually.

4 Results

Fig.10 shows the various stages of our method applied to a
bunny mesh model with 19996 triangles (upper), and a rhinoceros
mesh model with 18496 triangles (lower). Fig.10a is the initial
mesh, (b) is the result of partitioning and (c) is the result of
generation of zonal regions. We used 12 and 11 respectively for
the parameter w (the width of the zonal regions), and merged
regions smaller than 60 and 250 triangles (we determined these
parameter values by trial and error). (d) shows cut-lines, added
feature cut-lines and center cut-lines. (f) shows the set of strips
generated by mesh simplification and (g) is the model with the
cut-lines enhanced so as to make it easy to see the strips. (h) and
Fig.1c are photos of the assembled papercraft toys and (i) is the
unfolded pattern. We used a cutting machine to cut out the pieces;
the unfolded patterns were cut from four sheets of A4 paper. We
assembled the figures using scotch tape (automatically generating
flaps on cut-lines is straightforward, but we find that using scotch
tape without flaps is easier than gluing flaps). The heights of the
papercraft models are 17cm (bunny) and 14cm (rhinoceros), and it
took 2¼ hours and 3½ hours respectively to assemble them - this
is about the same as the time taken to craft the simple polygonal
model in Fig.3 with about 300 faces. As mentioned in Sec.2, if we
do not have to bend internal edges of strips, we not only generate
figures with smooth surfaces but also greatly save crafting time,
and in practice we did not have to bend almost all internal edges.
Fig.1b shows the equipment required for crafting – note that the
correspondence between parts of the 3D model and those of the
pattern is shown by a system implemented on a PC.

In terms of accuracy, the geometrical error between an input
mesh model and its simplified model is rather large compared to
those with other simplification methods. The RMS (root mean
square) errors as measured by Metro [Cignoni et al. 1998]
between the original models and those optimized by our method
are 0.0126 and 0.0113 respectively (size of models are normalized
to 1). These error values are almost same as those when we
simplify the original meshes to 270 faces and 200 faces
respectively using Garland and Heckbert’s [1997] method.

5 Conclusion and Future Work

We proposed a new method for producing unfolded papercraft
patterns from triangulated meshes by means of strip-based
approximation. The effectiveness of the method was demonstrated
by examples that kept the smoothness of original meshes. The
time consumed in crafting was reasonable. Although the accuracy
of approximation our method achieves may not appear
particularly good, the most important criterion is the visual
difference between an input mesh model and its papercraft figure
(papercraft figures will usually include additional large
geometrical errors due to manual assembly). It can be seen that
judged by this criterion our method works well for both models
generated originally from ranged data (bunny) and designed
manually (rhinoceros).

With our approach, we have to find appropriate parameters by
trial and error (in practice, this is not difficult), and we cannot
specify the approximation tolerance to the input mesh model. In
future, we hope to find method for automatically finding
applicable parameters for predefined tolerance. Additionally,

 5

methods for quantifiably evaluating the generated patterns are
required.

Furthermore, when papercraft is designed by humans, thin parts
of models (such as ears of animals or wings of birds) are
sometimes simply a single sheet of paper. We should wish to
enhance our method so that such non-manifold models can also be
simplified.

Acknowledgements

We would like to thank Dr Peter Varley for proof-reading this
paper and making suggestions concerning use of English.

References
ABNET CORP, 2003. Pepakura Designer.

http://www.e-cardmodel.com/pepakura-en/.
CHEN, H., LEE, I., LEOPOLDSEDER, S., POTTMANN, H., RANDRUP, T., AND

WALLNER, J. 1999. On Surface Approximation Using Developable
Surfaces. Graphical Models and Image Processing, 61, 2, 110-124

CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R. 1998. Metro: measuring
error on simplified surfaces. Compute Graphics Forum, 17, 2, 167-174

COHEN, J. D. 1999. Concepts and Algorithms for Polygonal Simplification.
SIGGRAPH 99 Course Tutorial #20, C1-C34.

ELBER, G. 1995. Model Fabrication using Surface Layout Projection. CAD
27, 4, 283-291.

EVANS, F., SKIENA, S., AND VARSHNEY, A. 1996. Optimizing Triangle
Strips for Fast Rendering. IEEE Visualization '96, 319-326.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplification using
quadric error metrics. In Proc. of ACM SIGGRAPH 1997, 209-216.

GARLAND, M., WILLMOTT, A., AND HECKBERT, P. 2001. Hierarchical
face clustering on polygonal surfaces. In Proc. of ACM Symposium on
Interactive 3D Graphics, 49-58.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUETZLE,
W. 1993. Mesh Optimization. In Proc. of ACM SIGGRAPH 1993, 19-
26.

HOSCHEK, J. 1998. Approximation of surfaces of revolution by
developable surfaces. CAD, 30, 10, 757-763.

HUBELI, A., AND GROSS, M. 2001. Multiresolution features extraction
from unstructured meshes. In Proc. of IEEE Visualization, 287–294.

KATZ, S., AND TAL, A., 2003. Hierarchical mesh decomposition using
fuzzy clustering and cuts. ACM Transactions on Graphics, 22, 3, 954-
961.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least squares
conformal maps for automatic texture atlas generation. ACM
Transactions on Graphics, 21, 3, 362-371.

MILENKOVIC, V. J. 1999. Rotational polygon containment and minimum
enclosure using only robust 2D constructions. Computational Geometry,
13, 1, 3-19.

NEIDER, J., DAVIS, T., AND WOO, M. 1993. OpenGL Programming Guide.
Addison-Wesley, 1993.

POTTMANN, H., AND FARIN, G. 1995. Developable rational Bézier and B-
spline surfaces. CAGD, 12, 5, 513-531.

SHEFFER, A. 2002. Spanning Tree Seams for Reducing Parameterization
Distortion of Triangulated Surfaces. Shape Modelling International, 61-
66.

SIGGRAPH 1998. SIGGRAPH 98 Teapot Assembly.
http://www.siggraph.org/s98/conference/teapot/

SORKINE, O., COHEN-OR, D., GOLDENTHAL, R., AND LISCHINSKI, D. 2002.
Bounded-distortion Piecewise Mesh Parameterization. In Proc. of the
conference on Visualization '02, 355-362.

TAUBIN, G., AND ROSSIGNAC, J. 1998. Geometric Compression Through
Topological Surgery. ACM Transactions on Graphics, 17, 2, 84–115.

TURK, G. 1992. Re-tiling Polygonal Surfaces. In Proc. of ACM
SIGGRAPH 1992, 55-64.

 (1a) (1b) (1c) (1d)

 (1e) (1f) (1g) (1h) (1i)

 (2a) (2b) (2c) (2d)

 (2e) (2f) (2g) (2h) (2i)

Figure 10. (a) Initial mesh (b) Partitions (c) Zonal regions (d) Cut-lines
(e) Smoothed cut-lines (f) Set of strips (g) Enhanced cut-lines (h) Photo of papercraft (i) Unfolded pattern

