
Computer aided design for Origamic Architecture models
with polygonal representation

Jun Mitani and Hiromasa Suzuki
Department of Precision Engineering, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
mitani@cim.pe.u-tokyo.ac.jp

Abstract

An Origamic Architecture (OA) is a folded sheet of per-
forated paper from which a three-dimensional structure
“pops up” when it is opened. It is similar to a “pop-up
story book”, but its unique feature is that it is made purely
by cutting a single piece of paper. Because of this limitation,
designing an OA requires considerable experience. We pro-
pose a computerised method which assists design of OAs.
An OA is modelled using a set of planar polygons. This
model must satisfy the conditions required of a valid, realis-
able OA. A unique point of our method is the application of
boolean set operations to the polygons on the unfolded pat-
tern to guarantee that the model can be made from a single
sheet of paper. We also present a procedure for checking the
model’s validity. Additionally, we propose methods for cre-
ating openings, for generating unfolded patterns, and for
displaying folding animation. We have implemented a sys-
tem based on these methods and demonstrated its usefulness
for creating OA. Our system allows designers to intuitively
design OA models and to easily generate the unfolded pat-
terns.

1 Introduction

An Origamic Architecture (OA) is a folded sheet of
perforated paper from which a three-dimensional structure
“pops up” when it is opened. This is one of various types
of pop-up card named by Chatani[1]. Though OAs are very
similar to pop-up cards in general in that 3D figures pop
up when they are opened, OAs are made with single sheet
of paper without any additional parts pasted on. By con-
trast, pop-up cards in general include such pasted-on parts.
Another difference is that with many pop-up cards the three-
dimensional structure pops up when the card is opened by
180◦; OAs are opened by 90◦. Books such as[2][4] provide
a good introduction to such OAs; it is these which our paper

deals.
Because of the limitation that the paper may be cut but

not added to, designing OAs requires a great deal of expe-
rience. Traditionally they have been designed by a process
of trial and error. We propose a new method in which a
computer aids the design process.

Methods of handling OAs in computers have not been
well studied, and we could find few related works. Chatani
first demonstrated CG animation of OAs [3], but the data are
pre-calculated and hard-coded in the program. Some works
study the design of pop-up cards with computer[5][6][9];
these are all for the 180◦ types, and these techniques cannot
be adapted to the design of the OAs we aim for.

We have previously proposed a method for designing
OAs using a voxel data structure[7]. This enables inter-
active design of OAs and easy generation of the unfolded
pattern by making use of the characteristics of voxel rep-
resentation and OA(Fig.1). However, the characteristics of
voxel representation only allow design of OAs in which all
edges are parallel to one of coordinate axes.

(a) (b) (c)

Figure 1. OA designed using voxel represen-
tation

(a) Voxel representation. (b) CG image of the OA.
(c) Photo of the real OA.

In this paper, we propose a new method which uses a set
of planar polygons to make it possible to design a wider va-
riety of OAs. Section 2 reviews basic theory of OA. Section
3 describes our proposed method in datail. Section 4 shows



our results. Section 5 outlines ideas fro future work.
Fig.2 illustrates various terms used in this paper. The

OA shown in Fig.2 cannot be designed using our previous
voxel-representation approach, but can be designed using
our new method.

Bottom Face

Back Face

Opening

Component Face

Pull Off

Figure 2. Definition of terms

2 Basic Theory of OA

2.1 Vertical and horizontal faces

The faces of the OA models we aim for will be either
vertical or horizontal faces when it is opened by 90◦. We
term these faces VFace and HFace respectively, as in Fig.3.

HFace

VFace

Figure 3. OA: VFace and HFace.

2.2 Model Coordinate(3D) and Pattern Coordi-
nate(2D)

We define the coordinate systems for 3D structure and
2D pattern as “Model Coordinate” and “Pattern Coordinate”
respectively, as shown in Fig.4. Since target OA is made
from a single sheet of paper without any other pieces of pa-
per pasted on, there is a one-to-one mapping between 3D
structure and 2D pattern. Given a distance tv between any
VFace and the Back Face and a distance th between HFace
and the Bottom Face, we can convert between the two coor-
dinate systems as follows.

[Model(3D)→ Pattern(2D)] conversion

{
x(2D) = x(3D)

y(2D) = z(3D) − y(3D)
(1)

[Pattern(2D)→Model(3D)] conversion

VFace: 
x(3D) = x(2D)

y(3D) = tv
z(3D) = y(2D) + tv

(2)

HFace: 
x(3D) = x(2D)

y(3D) = −y(2D) + th
z(3D) = th

(3)

y(3D) x(3D)

z(3D)

x(2D)

y(2D)

tv

th

Figure 4. Model Coordinate(3D) and Pattern
Coordinate(2D)

2.3 Data structure

When we consider how to represent an OA as a data
structure, we note that each component face must be recon-
structed from the data. Because of the one-to-one mapping
between Model Coordinate values and Pattern Coordinate
values using the equations 1 and 2, it is sufficient to store
either one of these. Since the boolean operations we shall
use later to create faces are applied to pattern coordinates, it
is more convenient to store the Pattern Coordinate values.

Thus, the data for one component face must contain the
Pattern Coordinate values of the 2D vertices which define
the outline of the face, a flag which defines the type of the
face (HFace or VFace), and value of t (t = tv when the face
is VFace, t = th when the face is HFace).

The data structures OAFace, which defines a component
face, and OrigamicArchitecture, which defines the whole
OA as a set of OAFaces, are defined as pseudo-C++ in
Fig.5.



enum faceType {VFACE, HFACE};

class Polygon2D {

list<Point2D> points;

};

class OAFace {

double value_of_t;

faceType type_of_this_face;

Polygon2D polygon_on_unfolded_pattern;

};

class OrigamicArchitecture {

list<OAFace> faces;

};

Figure 5. Definition of the data structure

2.4 Condition for pattern generation

As the OA is made from single sheet of paper, the poly-
gons of component faces (OAFace.polygon2D in Fig.5)
must not overlap in the pattern. Together, these non-
overlapping polygons cover the entire sheet.

These requirements are expressed in equation 4, where
Fi is the polygon of the ith component face, S is the whole
area of the sheet of paper, and the OA consists of n faces.
The OAs we aim for must satisfy this Condition for pattern
generation.

Fi∩∗F j = φ

F1∪∗F2∪∗ . . .∪∗Fn = S (4)

∩∗ and ∪∗ mean normalised boolean product and sum-
mation respectively[8].

2.5 Condition for Pop-Up

Even though an OA which satisfies the Condition for pat-
tern generation can always be made from a single sheet of
paper, it may not “pop up” when it is opened. For example,
the OAs in Fig.7 are invalid as they do not “pop up”.

The OA in Fig.7a has a part floating in mid-air. The up-
per and lower faces of the OA in Fig.7b are separated, and
as a result they are not pulled up when the Back Face and
Bottom Face are opened. In order to “pop up”, the OA must
satisfy a Condition for Pop-Up. The algorithm for deter-
mining whether an OA satisfies this condition or not is dis-
cussed in section 3.6.

F1

F2

F3

F4

s

Figure 6. Polygons that construct OA pattern

(a) (b)

Figure 7. Invalid cases

3 Computer Aided Design for OA

In the previous section, we discussed the conditions the
OA must satisfy and how data is stored. In this section, we
propose an interactive computerised method to aid design
of OAs so that users can easily design OAs which satisfy
the conditions.

3.1 User interface

Traditionally, OAs have been designed by a process of
trial and error which continues until they are move correctly
and represent the desired structures. The designer had to
design 2D patterns for OAs by hand, guessing how the 3D
structure would appear when they are opened. To address
this problem, we propose an interactive interface which
enables users to design 3D figures intuitively by viewing
3DCG images on a computer display.

The OA, comprising vertical and horizontal component
faces, can be designed if we can place these faces as we
wish in 3D space. The steps of the interface we propose are
as follows:

1. Initialise an OA to the simplest possible figure (this has
only a Back Face and a Bottom Face) (Fig.8a).



2. Move the vertical (horizontal) edit plane up and down
(back and forth) to determine where the user desires to
place a new component face (Fig.8b shows the vertical
case).

3. Input the outline of the new component face by se-
lecting grid points on the edit plane defined in step 2
(Fig.8c).

4. Generate a new OAFace and then display the CG im-
age of the OA including the newly-added OAFace.

5. Repeat steps 2 to 4 until the desired OA is achieved.

(a) (b) (c)

Figure 8. Interface for OA design.

3.2 Creation of faces

Using the interface we proposed in the previous section,
we can construct OAs interactively. However, as it is not
easy for the user to bear in mind the Condition for pattern
generation defined in section 2.4, the system should auto-
matically modify the whole OA pattern so that this condi-
tion remains satisfied when the user adds a new component
face. Hiding this process in the system allows the user to
concentrate on the design itself.

To achieve this, the system performs the following op-
erations between steps 3 and 4 of the interface proposed
previously.

1. Generate a new OAFace and add the OAFace to the
list in OrigamicArchitecture. OAFace.Polygon2D is a
Pattern Coordinate polygon which is calculated using
equation 1 from the 3D component face input by the
user.

2. Update the Polygon2D of previous OAFace’(i) by ap-
plying the following equation, where i is the index of
OAFaces and −∗ in the equation means normalised
boolean subtraction[8].

OAFace′(i).Polygon2D =

OAFace′(i).Polygon2D −∗ OAFace.Polygon2D (5)

3. Calculate the Model Coordinate values from the Pat-
tern Coordinate of OAFace and all OAFace’(i) using
equation 2 and 3, and then display them using 3DCG.

If the Condition for pattern generation is satisfied be-
fore a new component face is to be added, the above opera-
tion ensures that the condition is also satisfied after the face
has been added. The initial pattern (only Back and Bottom
faces) satisfies this condition, so the patterns generated by
a sequence of face-adding operations also satisfy the condi-
tion. With this method, the shape of the newly-added face is
not changed but the shapes of previous faces may, allowing
intuitive use as this is what the user will expect.

3.3 Creation of openings

With the interface we proposed in the section 3.1, OA
patterns can be designed by adding faces incrementally. An-
other operation which must be considered is creating an
opening (see Fig.2).

By using the face-create operation which we have al-
ready described, we can produce the same result as would
be produced by an opening-create operation which subtracts
a defined polygon from the existed polygons. For exam-
ple, in order to create an opening such as the square area
in Fig.9a and create the structure shown in Fig.9c, we can
create a horizontal rectangular component face as shown in
Fig.9b. Thus, face creation is dual-purpose as it can also be
used for opening creation.

(a) (b)

(c)

Figure 9. Creation of Opening

Since we can generate an opening by the corresponding
face-create operation, implementation is easy: we can use
the same algorithm to perform both operations. However,



it is not intuitive for users to create faces when they want
to create openings, so this conversion of operations should
be done automatically by the system and hidden from the
user. The system converts a polygon representing the shape
of the opening, as input by the user, to the polygon which
represents the shape of the corresponding new face.

We designate the functions of creating a vertical and a
horizontal opening CreateVOpening and CreateHOpening
respectively, and the functions of creating a vertical and a
horizontal component face CreateVFace and CreateHFace
respectively. Each of these functions requires as its input
an array of 3D points P[] which represent the outline of a
polygon.

Now we translate CreateVOpening and CreateHOpen-
ing into CreateHFace and CreateVFace respectively by
translating the positions of each point in P[] to the appro-
priate points P′[] as equation 6.

CreateVHole(Pv[]) = CreateHFace(P′v[])
CreateHHole(Ph[]) = CreateVFace(P′h[]) (6)

Each point in the converted point arrays P′v[] and
P′h[] is calculated using equation 7, where the co-
ordinate value of ith point of Pv[] and Ph[] are
(xv[i], yv[i], zv[i])and(xh[i], yh[i], zh[i]).

P′v[i] = (xv[i], yv[i] − zv[i] + minZ,minZ)

P′h[i] = (xh[i],minY, zh[i] − yh[i] + minY) (7)

Each point in Pv[] lies on a vertical polygon, so yv[i]
are constant, and each point in Ph[] lies on a horizon-
tal polygon, so zh[i] are constant. minZ is the minimum
z-coordinate value in Pv[], and minY is the minimum y-
coordinate value in Ph[].

By means of position conversion (equation 7) and func-
tion conversion (equation 6), we enable users to input poly-
gons wherever they want in order to create an opening; the
system can generate the opening using the same algorithm
as face creation.

3.4 Unfolded pattern generation

As described above, the OA data is stored as a set of
Pattern Coordinate positions of each component face. As
a result, the pattern can be easily generated simply by out-
putting the outlines of each face, using Pattern Coordinate
values, on a sheet of paper. We can aid the user further by
varying the style of lines according to their type (e.g. solid
line for cut, dotted line for ridge break, dashed line for val-
ley and so on), and to do this lines must be classified by
type. Since opening the OA rotates part of the pattern about
a line parallel with the Pattern Coordinate x-axis, any line

which is not parallel to the x-axis cannot unfold and must
therefore be a cut line. By contrast, a line parallel to the x-
axis can be ridge, valley or cut, and requires classification.
This classification can be achieved by comparing the rela-
tive positions in the Model Coordinate of two faces which
share a part or whole edge in the pattern. If the faces do
not share an edge in the Model Coordinates, the line is a
cut line. If the faces share a convex line, the line is a ridge;
otherwise, the line is a valley. In cases where the neighbour
faces share a part of edge, such as shown in Fig.10a, we di-
vide the lines at the end points of the shared part (the black
points in Fig.10b), and then classify the line segments as
before.

(a) (b)

Figure 10. Line segments sharing a part each
other

3.5 Folding and unfolding simulation with CG an-
imation

The appearance of an OA at any point in the process of
folding and opening can be displayed by transforming the
coordinate value (x, y, z) of each point on the component
faces using the equation eq:animation, changing the param-
eter θ as required. Fig.11 is an example of animation by
changing the value of θ.


X = x
Y = y − z cos θ
Z = z sin θ

(0 ≤ θ ≤ 180◦) (8)

3.6 Judgment for Condition for Pop-Up

In this section, we propose a method for testing whether
or not an OA satisfies the Condition for Pop-Up defined in
section 2.5. This test can be performed by checking the
connectivity of Pattern Coordinate polygons of component
faces, using the following algorithm.



Figure 11. Folding and unfolding animation

1. (a) Initialise a set of faces to contain only the Back
Face. Continue adding to this set any HFace
which is joined by a valley line to a VFace al-
ready in the set, and any VFace which is joined
by a ridge line to an HFace which is already in
the set, until no more faces can be added (we use
a recursive algorithm for this).

(b) Initialise a set of faces to contain only the Bot-
tom Face. Continue adding to this set any HFace
which is joined by a ridge line to a VFace already
in the set, and any VFace which is joined by a
valley line to an HFace which is already in the
set, until no more faces can be added (we use a
recursive algorithm for this).

2. The OA satisfies the Condition for Pop-Up if and only
if all component faces are in both sets or joined by a
ridge or valley line to a face that is in the set.

Fig.12 shows examples of applying the above. The left
pattern is the connectivity determined using rule (1a) and
the right pattern is the connectivity determined using rule
(1b). OAs (a) and (b) are found not to satisfy the Condition
for Pop-Up because they have component faces (marked
with [×]) which do not meet rule 2.

By including this test, our system allows users to verify
that the designed OA can “pop up” correctly before printing
out the pattern and cutting the lines.

4 Results

We have implemented our method on a PC and used this
implementation to design some OAs. Fig.13 shows two ex-
amples. Example (1) is a test case which has a pull off and
an opening. Example (2) is an attempt to design the Taj
Mahal. In both Figs, (a) is the CG image, (b) is the pattern
and (c) is a photograph of the final structure. We found the
interactive design approach intuitive to use; it took a few
minutes to design pattern (1) and about half an hour to de-
sign pattern (2).

5 Future Work

We have presented a new method for interactive design
of OAs in which the OA is represented as a set of poly-
gons. The issue of how the rounded faces may be designed
remains unresolved. Curves may be generated by approxi-
mating them to polylines, and stored as control points, but

(a)

(b)

(c)

Figure 12. Judgment for the Condition for
Pop-Up



(1-a) (1-b) (1-c)

(2-a) (2-b) (2-c)

Figure 13. Examples (a) CG image (b) Unfolded pattern (c) Photo

for editing purposes a more flexible data representation is
needed.

Acknowledgment

We would like to thank Dr. Peter Varley for his advice in
the writing of this paper.

References

[1] M. Chatani. Origamic Architecture Toranomaki. Shokokusya,
Tokyo, 1985.

[2] M. Chatani. Origamic Architecture Patterns-2. Shokokusya,
Tokyo, 1986.

[3] M. Chatani, S. Nakamura, and N. Ando. Practice of Origamic
Architecture and Origami with Personal Computer. Kodan-
sya, Tokyo, 1987.

[4] M. Chatani and K. Nakazawa. Oriagmic Architecture journey
to Kyoto. Shokokusya, Tokyo, 1994.

[5] A. Glassner. Andrew glassner’s notebook: Interactive pop-up
card design, part 1. IEEE Computer Graphics and Applica-
tions, 22(1):79–86, 2002.

[6] A. Glassner. Andrew glassner’s notebook: Interactive pop-up
card design, part 2. IEEE Computer Graphics and Applica-
tions, 22(2):74–85, 2002.

[7] J. Mitani and H. Suzuki. Computer aided design for origamic
architecture models with voxel data structure. J. IPSJ,
44(5):1372–1379, 2003.

[8] A. Requicha. Representation of rigid solids: Theory, meth-
ods, and systems. ACM Computing Surveys, 12(4):437–464,
1980.

[9] Y.T.Lee, S.B.Tor, and E.L.Soo. Mathematical modelling
and simulation of pop-up books. Computers & Graphics,
20(1):21–31, 1996.


