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Abstract: We propose a new modeling and rendering system that enables users to 
construct 3D models with an interface that seems no different from sketching 
by hand, and that displays models in a sketch-like style, preserving the features 
of the user's strokes. We call this system 3D SKETCH. To reconstruct 3D 
objects from sketches, we limit the domain of renderable sketches and prepare 
a template for interpreting sketches. As long as a sketch can be matched to 
such a template, the system can reconstruct a mesh model from the sketch. The 
system collects information about strokes made, and uses that information for 
our rendering scheme.  
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1. INTRODUCTION 

Although the use of CAD systems has become commonplace, traditional 
sketching is often more efficient in the early stages of concept design. One 
reason is that CAD systems are too tedious to allow the quick expression of 
design ideas, thus interfering with the designer’s creative process. Then, too,  
some designers do not like CAD images, which have have a very different 
style from rough sketches. We propose a new modeling and rendering 
system that enables users to construct a 3D model with an interface 
equivalent equivalent to sketching, and that displays the constructed model 
in sketch-like style that preserves the features of the user’s strokes. We call 
this system 3D SKETCH. 3D SKETCH is intended to support the early 
stages of the product design process, when design sketches are often drawn 
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quickly in order to visualize the rough geometric shapes of prospective 
products. The paper is organized as follows. Section 2 describes existing 
modeling and rendering methods. Section 3 describes a system for capturing 
the designer's input. Section 4 describes the 3D SKETCH modeling system 
for building mesh models. This system uses a template to interpret a sketch. 
Section 5 describes the 3D SKETCH rendering capability, which captures 
not only the fundamental shapes of strokes but also the essence of the user’s 
strokes. Section 6 describes the results of our method. Section 7 summarizes 
our conclusions and presents plans for future work. 

2. MODELING AND RENDERING 

2.1 Modeling 

In industrial applications, the WIMP (Window Icon Menu Pointing) 
device is popular. But because this interface is unintuitive and hard to learn, 
it is not well suited to the early stages of design. We are interested in system 
that enables the user to construct 3D models using a sketch interface. 

 The SKETCH system proposed by Zeleznik (1996) is based on gestures, 
each of which is a specific sequence of strokes. A gesture corresponds to 
some solid modeling operation. Though it is easy to create angular objects, it 
is hard to reflect the features of a designer’s strokes in 3D models. 

On the other hand, Igarashi (1999) proposed the Teddy system for 
generating Teddy bears, or rounded shapes. The system assumes that a 
sketched curve is a silhouette of an axis-symmetric object. The Teddy 
system provides a highly intuitive user interface and can reflect the features 
of a designer’s strokes. However, it is difficult to use for modeling prismatic 
objects. Varley (2000a) proposed RIBALD, which can convert a sketch to a 
B-Reps solid model. However, several assumptions must be made about 
sketches in order for RIBALD to perform this conversion, and thus it cannot 
directly accept sketch input by designers. 

Our system applies mirror symmetry to reconstruction. It is based on the 
method of Furushima et al. (1993), who applied mirror symmetry to 
reconstruct a surface model from a curved network. However, with that 
method a user must draw every curve even though some curves may be 
hidden behind the object. This hinders the natural sketch interface. 

2.2 Rendering 

Now, thanks to many studies, we can obtain computer graphics images 
rendered in almost photographic quality. Likewise, non-photorealistic 
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rendering, in which models appear as if sketched by hand or drawn as 
cartoons, has also been well studied. 

In the early stages of concept design, it is desirable to render a model in 
the form of a sketch and to do so in a way that leaves the designer’s creative 
process undisturbed. Markosian (1997) proposed a method to render outlines 
and feature lines speedily and to make real-time NPR possible. Both  
Zeleznik (1996) and Igarashi (1999) use NPR and display models as 
sketches. But these systems both use fixed algorithms to render models, and 
neither makes good use of the designer’s strokes. Our system uses 
information about strokes to render the features both the look and the “feel” 
of those strokes in the resulting model. 

3. 3D SKETCH 

Our 3D SKETCH system consists of three parts. The first captures the 
sketched input and generates an edge graph from it. The second uses this 
graph to reconstruct a mesh model. The third renders the constructed model 
in a sketch-like style that includes the features of the hand-drawn strokes. 

The flow of our 3D SKETCH system is shown in Figure 1. The boxes at 
the left of the figure are the stages of user interface, and the boxes at right 
are the system transaction stages, which are not seen by users. The system 
transacts the sketch analysis, model reconstruction, and rendering without 
any intervention by the user. Thus, from the user’s standpoint a 2D sketch 
becomes a 3D model automatically.  

 

Figure 1. The flow of 3D SKETCH (Example of a speaker) (a) The user draws a sketch.   (b) 
 The core curves that represent the features of the model are extracted. (c) An edge graph of 
the core curves is constructed.  (d) An edge graph needed for reconstruction is extracted. (e) 
3D information is obtained. (f) A 3D solid model is reconstructed. (g) Sketch-style NPR is 

applied to the generated model. (h) User can operate the generated model. 
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3.1 Sketch Input 

Various kinds of design sketches are used in design processes. In 3D 
SKETCH, we are particularly interested in sketches like those shown in 
Figure 2. All of these sketches are drawn with lines (which may be curved), 
so we call them line sketches hereafter. A designer draws a line sketch stroke 
by stroke; the strokes represent characteristic curves to define geometry, or 
hatching to represent surface texture. 

We use a locator device, such as a tablet, to capture every stroke as a 
designer draws it. A stroke is defined as a series of locations generated by 
the locator device within a certain period of time or within a gesture (Figure 
3 (a)). In our approach, a stroke is a fundamental element of a sketch.  

The system needs to extract an edge graph, which represents the major 
lines (curves) of the sketch and their connectivity. 

 

Figure 2. Examples. 

3.2 Stroke Bundles 

In a line sketche, the designer represents the shape of a product by 
drawing characteristic curves and hatching lines. A characteristic curve is 
not usually drawn as a single stroke but as a number of overlapping strokes. 
In this paper, a stroke bundle refers to such a set of strokes that collectively 
represent a characteristic curve (Figure 3 (b)). The stroke bundle is 
approximated by a core curve, which is extracted from the stroke bundle (see 
the dotted curve in Figure 3 (b)). 

 

 

Figure 3. (a) Stroke,  (b) stroke bundle (solid curve), and core curve (dotted curve). 
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3.3 Core Curve Tracking 

As a designer defines a characteristic curve incrementally, stroke by 
stroke, the corresponding stroke bundle extends. Thus we have to update the 
core curve each time a new stroke is added to the bundle. Figure 4 shows an 
example. Figure 4 (a) illustrates a bundle of two strokes (solid curves) and 
its core curve (dotted curve). In Figure 4 (b) a new stroke is added, and the 
core curve is updated as shown in Figure 4 (c). Matsuda (1999) proposed an 
updating method for strokes of parametric curves. Here we propose a 
method for polylines. The way to update a core curve is detailed in our paper 
(Varley 2000b). 

 

 

Figure 4. Updating of core curves. (a) Strokes (solid curve) and core curve (dotted curve). (b) 
Addition of a stroke. (c) Extending the core curve. (d) Not updating the core curve for an 

inclusive stroke. 

3.4 Extracting an Edge Graph from Core Curves 

After all the strokes are made, we have a set of core curves and their 
stroke bundles. The next thing that we have to do is to connect these core 
curves to extract an edge graph. The edge graph represents a network of 
characteristic curves of an object--more specifically, it represents the edges 
of a polyhedral object. 

Core curves correspond to the arcs of the graph, and the end points of 
core curves correspond to the nodes of the graph. Thus the graph is extracted 
by identifying a node with end points of core curves that lie within a 
threshold distance of each other. (As mentioned earlier, some strokes 
represent surface hatching and so are not considered part of the edge graph.) 
To accommodate this extraction, we assume that the graph is connected. 
Thus if a core curve cannot be connected to any other core curves, it is not 
included in the graph. 
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4. BUILDING MESH MODELS 

In this section we describe a method to construct a 3D mesh model of an 
object from a single line sketch. 

4.1 Domain of Input Sketch 

As mentioned above, we need to make some assumptions in order to 
construct a 3D model from a single sketch. First of all, we limit the domain 
of sketches to those shown in Figure 2. More precisely, an object is required 
to satisfy the following conditions: it must have six faces of four sides, it 
must have mirror symmetry, and the back face and bottom face must each be 
planar. The sketch of the object must be drawn from such an angle that three 
particular faces (top, front, and left) can be seen. 

Such conditions might be considered too restrictive, but all the examples 
in Figure 2 satisfy them, since we allow curved surfaces. Particularly, a wide 
variety of electronic appliances meet these conditions. 

4.2 Matching Edge Graph to Template 

After the strokes are made, 3D SKETCH generates an edge graph. 
According to the conditions described in the previous section, the graph 
should look like the diagram shown in Figure 5. It should have nine major 
characteristic curves that are connected at seven nodes, V1 to V7. Thus, we 
first check to see whether or not the graph is isomorphic to this template. 

The diagram in Figure 5 is used as a template for reasoning about the 3D 
geometry. We could use other, similar templates to apply our approach to 
other categories of sketches. 

  

Figure 5. Matching graph structure from core curves. 

4.3 Calibration of Camera Parameters 

A sketch can be regarded as a projected view of an object, although the 
projection is not accurate. In order to generate 3D information, we have to 
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estimate camera parameters of the projection that correspond to the 
viewpoint of the designer.  

Consider two parallel lines in 3D space.  Their projections are also 
straight lines in the 2D drawing space. If these lines intersect, the 
intersection is called  a vanishing point. If we can find three vanishing points 
for the sketch, we can estimate the COP (center of projection) using a 
method proposed by Kondoh (Kondoh 1988). 

So we first find the vanishing points on the sketch by using a least-
squares approximation. 

The calibration of the camera parameters is detailed in our paper (Varley 
2000b). 

4.4 Generating 3D Edge Curves 

We can get 3D information about curves by using the camera parameters 
and some constraints. The reconstruction of 3D positions using mirror 
symmetry is based on the method of Furushima et al. (1993). We apply this 
method to our template to determine the 3D edge curves.  

For our template, the object has a 3D structure of the type shown in 
Figure 6. It has six faces and 12 edges. The connectivity of these faces and 
edges is also defined. We first compute the 3D polylines for those 12 edges, 
and then generate polygonal meshes for those faces surrounded by those 
edges. 

The edge graph of a sketch is assumed to have core curves corresponding 
to the nine edges numbered (1) to (9) in the figure. The edges marked (1) 
through (12) can be computed as follows.  

 
(1) & (9), (6) & (8): Pairs at mirror-symmetrical positions: (1) & (9) 

and (6) & (8) have mirror symmetry, so they can be determined. First, the 
curves are resampled so that both curves of a pair have the same number of 
uniformly spaced points. As each point on one core curve has a 
corresponding counterpart on the other core curve (at positions of mirror 
symmetry), their three-dimensional positions can be determined. 

(2), (5), (7): Self mirror symmetry: By dividing these curves at their 
midpoints, they can be considered a pair of core curves with mirror 
symmetry. In addition, core curve (2) lies on the xy plane, so, after 
computing the 3D geometry based on the mirror symmetry, we further 
correct it to lie in the xy plane. 

(3), (4): Planar constraint: Every point of core curve (3) lies on the xy 
plane and every point of (4) lies on the back face. This back face is parallel 
to the y axis and can be defined using one of the end points of core curve (5). 
Thus we can determine the core curves’ 3D positions. 
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(10), (11), (12): Finally, we define the hidden edges. Edges (11) and (12) 
are at mirror-symmetrical positions to (4) and (3), respectively. Thus, they 
can be computed as the mirror images of (4) and (3), which have already 
been defined.  Edge (10) is an intersection of the xy plane and the back face, 
so it can be defined by connecting the end points of (3) and (12). 

 

 

Figure 6. Determining polylines for 12 edges. 

4.5 Surface Generation 

In order to generate a mesh model, the surfaces for the six faces of the 
object are generated by interpolating their four boundary edges using Coons 
patches (Farin 1997). The polyline of an edge can be regarded as a 
parametric curve. All the edges except edge (10) have been generated from 
resampled core curves. Thus, they are also polylines having almost uniform 
spacing between the vertices, and therefore can be considered as a series of 
points uniformly sampled from a continuous curve. Edge (10) is a straight 
line segment, so its parameterization is trivial. Using the Coons patch, we 
uniformly sample the surface to generate a regular triangular mesh. 

5. SKETCH-STYLE NPR 

Our 3D SKETCH system is designed for the early stages of concept 
design. To preserve the designer’s expression and not disturb the designer’s 
creative process, we use real-time non-photorealistic rendering. The usual 
NPR methods use predefined static algorithms to generate sketch-style 
images from 3D model data, because the input data include only geometric 
information. On the other hand, our system has not only 3D geometric 
information but also all of the sketch stroke information the designer entered 
to express. The strokes include character lines and hatching that express the 
state of the surface. Thus, we attempted to use the stroke information to 
more fully render the model. Once this has been done, the model is displayed 
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as an image that looks as if it had been sketched directly by hand, even when 
viewed from different directions. Here we describe how to apply the stroke 
information to the reconstructed model. 

5.1 Stroke Mapping to the Faces 

The data on strokes entered by the user to express the “feel” of the model 
are stored as a sequence of polylines. To apply the user’s expression to the 
model, the polylines are mapped onto the surfaces of the reconstructed 
model, in what can be regarded as a texturing method. The system first 
projects the 3D model on a sketching screen with a camera projection matrix 
obtained in the previous section. Then we try to find the correspondence 
between the projected model and the sketched strokes (Figure 1(g)). 

The model consists of triangle mesh, and the strokes (i.e. the polylines) 
are sequences of vertices. For each vertex, the system finds a triangle that 
contains the vertex and barycentric coordinates of the vertex in this triangle. 
If a vertex is contained in multiple triangles, only the triangle nearest the 
camera position is used. When a triangle is rendered, the segments mapped 
on the triangle are drawn together. 

Though this method works well for strokes drawn on faces, strokes 
drawn as character lines sometimes are not displayed as we would expect, 
especially when the character lines form a silhouette.  

For example, a portion of the strokes that compose a silhouette of a box 
drawn with multiple strokes (Figure 7(a)) disappears when the box is rotated 
(Figure 7(b)). This is because some strokes lie on the outside of the projected 
model, so that the system failed to find triangles that contain vertices of the 
strokes. Even if the triangles containing strokes are found, a similar problem 
occurs when the strokes become a silhouette (Figure 7(c)). This is because 
the triangles on which the strokes are mapped go to the back side, making 
strokes invisible. 

 

 

Figure 7. The silhouette strokes mapped onto faces disappear when viewed from different 
directions. 
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5.2 Stroke Mapping onto Character Lines 

To solve the problem described in the previous section, we propose a 
new method that is applied to strokes representing character lines. The 
system keeps the information about the relative positions of the strokes to 
core curves, and draws strokes using this information to display the character 
lines. For example, when the character line (the dotted line in Figure 8(a)) 
drawn with multiple strokes (solid lines in Figure 8(a)) is rotated, strokes are 
remapped onto the character line using the information on relative positions; 
thus, this feature of the strokes is preserved. It can be regarded as texturing 
for edges rather than for faces. 

Because the reconstructed model is a mesh, the 3D character line is a 
polyline. So we have to find a polyline segment that corresponds to each 
stroke. Although it is easy to obtain information about the positions of the 
strokes relative to the core curves, it is not easy to obtain a 3D character line 
that corresponds to each stroke. We discuss how to get this correspondence. 

 

 

Figure 8. A character line and related strokes. 

We abbreviate some terms as follows: 
PC:  Projected Character line of the reconstructed 3D model. 
PCS:  Projected Character line Segment. 
S:   Stroke entered by a user. 
SS:   Stroke Segment. 
C:   Core curve related to multiple strokes. 
CS:  Core curve Segment. 
A ∈ B:  A is an element of B. 
A  B: A has a 1:1 relationship to B. →← 1:1

1:nA ←  B: A has a 1:n relationship to B. →
 
At first, we obtain the information on the relative position of each SS to a 

CS. This information consists of the values of the relative position 
parameters l and t, and the references to the nearest CS from the SS (Figure 
9(c)). l is the distance between the end point of SS and the CS, and t is the 
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value of the foot of SS on the CS that is between 0 and 1, where the start 
position of the CS corresponds to 0 and the end corresponds to 1. 

 

Figure 9. Stroke mapping onto character lines. 

Then the system finds the correspondence between each PCS and each 
SS. When the system renders a character line, the SSs instead of the PCS are 
drawn, applying the relative parameters l and t  (Figure 9(d)).  

When a model is generated from a sketch, the following relation is 
known.  

CS
PCC

CCS
SSS

PCPCS

→←

→←

∈
∈

∈

1:1

1:1

 (1) 

The questions are how to obtain the correspondence between SS and PCS, 
and how to decide the relative position parameters. That is, we want to know 
the relation of  

SS  PCS  →← 1:1

and the relative position parameters l and t (Figure 9(d)).  
When the number of PCSs in a PC is m, we subdivide C to m CSs. Then 

we get the relation: 

)0(1:1 miPCSCS ii <≤→←  (2) 
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After this subdivision, we calculate the parameters l and t. Now, we get   

i
n CSSS →← 1:  (3) 

from (1) and (2) (Figure 9(c)). 
After that, we change the reference of the SS from CSi to the PCSi that 

corresponds to the CSi. Then we get 

PCSSS n→← 1:  (4) 

and parameters l and t. 
Figure 10 is an example of this method applied to a box. Even when the 

box is rotated, edges are displayed, thus keeping the features of the entered 
strokes. (There are no bottom side edges, because no strokes are mapped 
(Figure 10(c))). 

 

 

Figure 10. Strokes mapped on character lines. 

6. RESULTS 

Our prototype 3D SKETCH system has been implemented in Java on a 
personal computer (Pentium III 600MHz, memory 512MB). Figure 11 
shows examples of an electronic gadget. Figure (a) shows the inputted 
sketch of 43 strokes. Figure (b) shows the core curves extracted from (a). In 
Figure (c), dots show the seven recognized vertices of the template, while 
the box shows a unit cube corresponding to the extracted world reference 
frame. Figure (d) is the reconstructed mesh model with 1304 vertices. The 
total CPU time needed to process the sketch data to produce each mesh 
model is about 20 seconds. Figure (e) shows the image our rendering 
methods produced using a user’s strokes. Figure (f) is a smoothly shaded 
image from a different perspective. Figure (g) shows the images viewed 
from different perspectives. The rendering is swift enough to handle the 
model interactively. 
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Figure 11. The result of a 3D SKETCH of an electronic gadget. 

7. CONCLUSIONS 

This paper has described the 3D SKETCH system as it targets the early 
stages of concept design. The system generated a model by interpreting a 
graph of a sketch. As long as the sketch is compatible with the prepared 
template, the user can construct a model in a natural sketching manner 
without being burdened by any computational operation. 

The system renders the generated model with sketch-style NPR using 
information obtained about the user’s strokes. The model looks like a hand-
drawn sketch even when viewed from different directions. The rendering 
was swift enough to handle the model interactively. 

For future work, we propose the following subjects: 
More-flexible templates should be developed, to enable the 
system to cover a wider variety of sketches. 

• 

• 

• 

Although we generate surfaces as Coons patches from character 
lines, a designer may draw strokes to express the appearance of a 
surface. It is desirable for the system to generate the faces that 
reflect the strokes. 
With our system, only a single model can be constructed. We 
should make the system able to handle multiple models in one 
sketch to make it possible to construct more-complicated models. 
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