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ABSTRACT 

Rapidly increasing 3D shape application has led to 
the development of content-based 3D shape retrieval 
research. 

In this paper, we proposed a new retrieval method. 
The method is constructed on a spatial distribution 
computation of sampling points on the surface of 3D 
shape. The contribution is that we use an inner cylinder 
to contain the points distributed nearer on the largest 
principal axis, and its radius is the average distance of 
points to the largest principal axis. And then we 
compute the point spatial distribution by partitions of 
the minimum bounding box and the inner cylinder.  

We have examined our method on a database of 
general objects and confirmed its efficiency. We also 
compared this method with other similar methods on 
the same shapes database, and it achieved better 
retrieving precision. 

This method can be used to classify 3D shapes and 
retrieve similar shapes in shapes database. 
 
 

1. Introduction 
 

Over the past several years, steadfast efforts have 
been made to make machines or computers learn to 
understand, index, and retrieve texts and images 
representing a wide range of concepts. With the rapidly 
increasing of 3D data in many applications, such as 
computer games, computer aided design, VR 
environments, biology, e-business, etc., 3D shape data 
represents more complex human intelligence, and, 
description and retrieval of them also becomes more 
challenging. 

Accordingly, there is an increasing need for computer 
algorithms to help people find their interesting 3D 
shape data and discover relationships between them. 

Recently, many efforts have concentrated on 
researching techniques for efficient content based 
retrieval of 3D objects [1].  

The key of content-based 3D shape retrieval is to 
develop a description capturing and extracting the main 
feature of 3D objects, because 3D shapes can be 
discriminated by measuring and comparing their 
features. In fact, the process of feature extraction is a 
process of reducing dimension from high-dimensional 
3D data to low-dimensional feature data. A feature 
descriptor is a d-dimensional vector of values, and as 
for all the 3D shapes, the dimension d is fixed. In the 
d-dimensional space, if two vectors are close, two 
shapes are considered to be similar.  

In this paper we present a content-based 3D shape 
retrieval method relying on point spatial distributions 
on the surface. The shape feature is computed as the 
following: 
1.  Use of Principal Component Analysis. There are 
two motivations. 
  1) Pose estimation: Translate the centroid of all the 
models into the origin of the coordinate system and use 
the Principal Component Analysis (PCA) method to get 
the rotation invariant dissimilarity measures.  

2) At the same time, we use the PCA method to let all 
the vertices distribute along the principal X -axis to 
compute an inner cylinder which axis is the principal 
X -axis. 

2.  Random point sampling: Unbiased random points 
can be generated according to the surface area of a 
triangle on the surface to ensure all the shapes have the 
same number of sampling points. 
3.  Computation of point spatial distributions. We 
compute the point spatial distributions based on 
subdivision (partitions) of the minimum bounding box 
and an inner cylinder. That is, where sampling points on 
the surface locate. By digitizing the spatial locations of 
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the points, the feature vector can be represented. 
4.  Feature matching.  The produced feature vector 
can describe a 3D shape. It can be used to 3D shape 
matching. 

We apply our method to a database of general objects 
collected from free Princeton Shape Benchmark 
Database [3]. This method is confirmed to be efficient. 

The outline of the rest of the paper is as follows: in 
the next section we shortly review the previous work in 
3D model retrieval and relevant methods. In section 3 
we present our method of feature computation. We will 
put emphasis on the computation of point spatial 
distributions. Section 4 describes dissimilarity 
computation for feature matching. Section 5 shows 
experimental results and conclude in Section 6. 
 

2. Previous Work 
In this section, we will discuss the recent 3D retrieval 

methods and divide them into two main categories of 
shape matching, feature distribution and shape 
descriptors. Finally, we will introduce the other relevant 
developments. 
 
2.1 Feature distribution  

It is easy and fast to compare feature distributions of 
models, and it does not need any normalization of a 3D 
mesh-model. 

Osada et al. [2] match 3D models with shape 
distributions. The key idea of this method is to present 
the signature of an object as a shape distribution 
sampled from a shape function measuring global 
geometric properties of an object. Another method 
presented in [5] extended the D2 shape function of 
shape distributions [2] by considering the inner product 
of the normals of sampled point pairs. Ankerst et al. [4] 
have used shape histograms decomposing shells around 
a model’s centroid. X.Liu et al. [6] utilize the 
directional histogram model to characterize 3D shapes. 
The shape can be described by the thickness distribution 
in the directions per latitude and longitude. Ohbuchi et 
al. [7] construct the shape analysis using the moment of 
inertia about the principal axes of the model. Yi et al. 
[16] present a novel 3D shape descriptor "The 
Generalized Shape Distributions" for effective shape 

matching and analysis, by taking advantage of both 
local and global shape signatures, extended from shape 
distributions [2]. 
  All the feature distribution methods have a common 
limitation that these methods can only catch the similar 
gross shape properties and be powerless to catch the 
detailed shape properties.  
 
2.2 Shape descriptors 

As a representative example, spherical harmonics is 
applied in a large field such as earth physics, image 
analysis, biology, and so on. It is firstly introduced in 
the 3D model retrieval by D. V. Vranic in [9]. 
Funkhouser et al. [10] profit from the invariance 
properties of spherical harmonics and present an affine 
invariant descriptor based on spherical harmonics. D. 
Saupe [11] constructs moment-based descriptor by 
representing a spherical function using spherical 
harmonics.  

The feature extraction is performed using a rendered 
perspective projection of the object on an enclosing 
sphere in [12]. It is considered as a shading-based shape 
descriptor.  

Novotni and Klein [13] present a so-called 3D 
Zernike descriptor by computing 3D Zernike 
descriptors from voxelized models as natural extensions 
of spherical harmonics based descriptors.  

 
2.3 Other related developments 

Joshua et al. [14] describe a planar reflective 
symmetry transform (PRST) that captures a continuous 
measure of the reflectional symmetry of a shape with 
respect to all possible planes. The symmetry transform 
is useful for shape matching. 
Dmitriy et al. [15] present several distinctive 
benchmark datasets for evaluating techniques for 
automated classification and retrieval of CAD objects. 
 
 
  In our paper, we compared our method with two 
typical methods, shape distributions [2] and shape 
histograms [4]. For comparing fairly, we programmed 
and implemented the two methods and tested on the 
same database. 

http://portal.acm.org/results.cfm?query=author%3ADmitriy%20Bespalov&querydisp=author%3ADmitriy%20Bespalov&coll=GUIDE&dl=GUIDE&CFID=17447973&CFTOKEN=77553485�
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3.  Feature computation 
In this section, we present the basic ideas on how to 

compute the point spatial distributions. The following 
figure presents a preview of the computation process. A 
concrete process of generating the distributions for 3D 
shape will be discussed in details.  

PCA Sampling

Partitions of 
Bounding Box

Subtract points 
in inner cylinder Feature

 
Figure 1 Preview of computation process 

 
3.1 Principal Component Analysis 

First, translate the centroid of all the models into the 
origin of the coordinate system. Secondly, use the PCA 
(Principal Component Analysis) method [8] to obtain a 
rotation invariant measure.  

As we know, the eigenvectors of PCA are called 
principal axes and describe the three orthogonal axes 
where the scattering of the elements is greatest. The 
eigenvector corresponding to the largest eigenvalue 
coincides with the direction of largest variance of the 
3D data set. The direction of the largest variance is 
usually regarded as the principal X -axis direction. A 
majority of vertices distribute along the direction. 

Accordingly, we use the PCA method to let all the 
vertices distribute along the principal X -axis to 
compute the next inner cylinder which axis is the 
principal X -axis. 

 
3.2 Random point sampling on the surface of a 
shape 

Unbiased random points can be generated according 
to the surface area of a triangle on the surface. Here we 
use Monte-Carlo sampling approach. 
  Firstly, compute the area of each triangle and store 
the cumulative area of triangles visited in an array. 
  Secondly, generate a random number between 0 and 

the total cumulative area and perform a binary search 
on the array of cumulative area. The probability of 
finding a triangle is proportional to its area. 
  Lastly, in each selected triangle with vertices 
( , , )A B C , sample a point P  with respect to the 

following procedure: 

Generate two random float numbers, 1r  and 2r  

between 0  and 1 . Compute the P  according to the 
following equation: 

1 1 2 1 2(1 ) (1 ) ( )P r A r r B r r C= − + − +  

1r  sets the percentage from vertex A  to the opposite 

edge. 2r  sets the percentage along this edge. The 

consideration of taking the square root of 1r  is to get 

an unbiased random point with respect to surface area.  

 

Figure 2 Sampling a point in a triangle 
 
3.3 Computation of point spatial distributions 

After pose normalization and random sampling, a 
shape can be represented as a set of points S . S  
includes T  elements(points) in total. From these 
points, a bounding box and an inner cylinder can be 
calculated. This computation is based on partitioning of 
the bounding box and which ones of points are outside 
the inner cylinder.  

 
3.3.1 Subdivision (Partition) of the bounding box 

Subdivide the bounding box to N N N× ×  bins 
(partitions). 

With respect to this subdivision, accordingly, the set 
of points S  is divided into N N N× ×  subsets of 

points, 31 2, ,...
N

S S S . The subset iS  includes all the 
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points reside in the i -th bin. 
 
3.3.2 Inner cylinder computing 

After the computation of PCA, all the points 
distribute along the principal X -axis. And next, 
compute the distance of every point to the X -axis.  

As for an arbitrary point jP ( , , )j j jx y z , the distance 

jd  is as follows: 

2 2
j j jd y z= +  

  The average distance d  of all the distances 

jd ( 1,...,j T= ) is: 

1

1 T

j
j

d d
T =

= ∑  

Produce a closed cylinder, with which the central axis 

is X -axis, and the radius is r d= . And it has infinite 
height. Among the set of points S , a subset of points 
C  resides inside the cylinder. That is, As for an 
arbitrary point in S , if it is inside the cylinder, it 
belongs to the subset C . 

{ },j j jC P d r P S= < ∈  

The complement of the subset C : 

{ },j j jC P P S P C= ∈ ∉  

Obviously, the subset C  belongs to the set S . That is, 
C S⊂ .  
  The motivation of the inner cylinder computing is to 
eliminate those nearer points distributed round X -axis.  
 
3.3.3 Revision of the subsets in the bounding box 

As for N N N× ×  subsets of points, 31 2, ,...
N

S S S , 

the following gives the revision. 

As for an arbitrary subset iS , ijP  is one arbitrary 

point of the subset. The revision iS ′ of iS  can be 

computed according to the following formula. 

i iS S C′ = I  

{ },ij ij i ijP P S P C= ∈ ∈ , 31,2,....i N=  

 
3.3.4 Computing the number of elements in every 
subset iS ′  
  iv  is marked as the number of elements in the subset 

iS ′ . It is a positive integer or zero. iv  composes an 
array V : 

31 2[ , ,... ,... ]i NV v v v v=  

 
3.4 Feature vector 
  The array V  can be used as the feature vector of 
one shape after the following computation. 

31 2
1 [ , ,... ,... ]i NV v v v v
T

=  

 

4. Dissimilarity computation 
  Having computed the point spatial distributions for 
one shape, the left task is how to produce a dissimilarity 
measure. There are several standard ways of comparing 
two vectors. We tested two general ways including 1L  
and 2L  norm, and found 1L  norm performed better 
than 2L  norm. 

Accordingly, as for two shapes a  and b , the 
dissimilarity can be defined as the following. 

SD = a bV V−

3

, ,
1

N

a i b i
i

v v
=

= −∑  

 

5.  Experiment results 
We implemented this method using C# on the 

environment of Visual Studio 2005 of Windows 
operating system. In the experiment, we adopted 22 
classes, in total 110 models collected from Princeton 
Shape Benchmark in the internet.  

We tested the parameters including sampling points 
T  and the subdivision number N , and compared the 
computation time and retrieval performance. The table 
1 shows the test results. The retrieval performance is 
evaluated by the Precision/Recall plot. If the plot of one 
test is located upon the plot of another test, we think it 
performs better. So we use the words “Best, Better, 
Bad” to express the retrieval performance. 
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Table 1. Testing parameters and the results 
T  

(Sampling 

Points) 

N  
(Subdivision 

Number) 

Comput
-ation 
Time (s) 

Retrieval 
Perform 
-ance 

9000 5 0.2 Best 
9000 3 0.18 Bad 
9000 7 1.1 Bad 
1000 5 0.05 Better 
1000 3 0.03 Bad 
1000 7 0.1 Bad 
18000 5 1.5 Best 
18000 3 1.4 Bad 
18000 7 2 Bad 
 
After tested, we found, in the same Subdivision 

Number 5N = , the more points we sampled, better the 
results become. Finally, we chose 9000T = and 

5N = based on the balance of computation time and 
retrieval performance. Accordingly, after pose 
normalization, we generated 9000 random points for 
every model. According to our point spatial distribution 
computation with 5N = , we calculated the feature 
vector for every model and compared the dissimilarity 
between two arbitrary models. 
  The following figures give two groups of retrieval 
examples.  

 
 

Input 

 

Retrieving results with rank 

 

1(itself) 

 

2 3 

 

4 

 

    5 
Figure 3. Retrieving examples 1 

 
 

Input 

 

Retrieving results with rank 

1(itself) 

 

2 3 

 

4 

 

5 
Figure 4. Retrieving examples 2 

We also compared our method with the two other 
methods, Shape Distributions and Shape Histograms. In 
programming and implementing the two methods, we 
adopted the recommended parameters in their papers. 
For example, according to [2], we used D2 shape 
function and produced 1024*1024 distances. And 
according to [4] we produced 120 shells. Lastly, we also 
tested our method and the two other methods in the 
same database. The following figure shows the 
precision/recall plots of our method and the other two 
methods.  

 

Our method       Shape Distributions  
Shape Histograms 

Figure 5. Precision/Recall plots 
Now we complement the definition of 

Precision/Recall plot used in the above plots. (Please 
note retrieved results of one shape include itself) 
Precision is the percentage of qualifying (similar) 
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shapes retrieved with respect to the total number of 
retrieved shapes. And Recall is the percentage of 
qualifying shapes retrieved with respect to the total 
number of similar shapes in the database. 
 

6. Conclusion and Future Work 
In this paper, we proposed a 3D shape retrieval 

method based on our point spatial distributions. The 
method is confirmed to be efficient according to our 
experiments, and can be applied to classify 3D shapes 
and construct a 3D retrieval system.  
 In future, we will consider replace the Monte-Carlo 

sampling approach by an interest point detector [17], to 
alleviate the computational burden of generating a large 
random number of shape signatures. About aligning 
objects in a canonical coordinate system, we will use 
the symmetry transform to define two new geometric 
properties, center of symmetry and principal symmetry 
axes, and they are more useful for aligning objects than 
PCA. Moreover, we will improve our method and use it 
to extract local features of a shape. 
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