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ABSTRACT  
In the present paper, we propose a novel 3D shape descriptor by 
performing multiresolution wavelet analysis on shape orientation. 
We consider the spatial orientation of the polygon surfaces of a 
shape as important information and characterize this information 
by setting view planes. We then analyze these view planes by 
multiresolution wavelet analysis, a powerful tool used in signal 
processing, and lower the high resolution to low frequency 
domains because the high resolution contains too much 
information, which must be reduced in order to capture the main 
components. We compare the proposed descriptor to two of the 
best-performing descriptors on the Princeton Shape Benchmark, 
Spherical Harmonics Descriptor and Light Field Descriptor, and 
analyze the performance of the proposed descriptor from several 
aspects. We also compare the proposed descriptor to the Spherical 
Wavelet Descriptor, which won the best paper award at SMI06, a 
near method to our descriptor. The proposed descriptor improves 
the retrieval performance. 

Categories and Subject Descriptors 
I.3.5 [Computer Graphics]: Computational Geometry and Object 
Modeling – Curve, surface, solid, and object representations; 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Retrieval models; H.3.1 [Information Storage 
and Retrieval]: Content Analysis and Indexing – Abstracting 
methods. 
General Terms: Algorithms, Performance, 
Experimentation, Measurement 
Keywords: 3D shape retrieval, 3D shape descriptor, shape 
orientation, multiresolution wavelet analysis. 

1. INTRODUCTION 
In the past twenty years, the use of multimedia information has 
expanded quickly in a number of fields such as image, audio, 
video, 3D model. The availability of an enormous number of 

multimedia data has forced researchers to consider how to supply 
users with good retrieval methods. The 3D model, as a relatively 
new form of multimedia, has higher dimension than other 
multimedia data, and so it is more difficult to find very efficient 
retrieval methods. Therefore the computer graphics community 
has shown considerable interest in 3D shape retrieval.  

3D shape retrieval can be described as follows. A shape retrieval 
algorithm searches the similar shapes to a given query shape, 
which belong to the same class in a database. It is difficult to infer 
mathematically which algorithm of shape retrieval is better than 
others. Therefore, the only way of comparison is to adopt a shape 
benchmark data set to evaluate the performance of the algorithms 
on the same shape benchmark. The best known benchmark is the 
Princeton Shape Benchmark [1] which is widely adopted by 
researchers. This benchmark contains generic 3D shapes for 
testing. 

We think the performance of a 3D shape descriptor should be 
judged on discriminative power and time-space cost requirements. 
The discriminative ability of an algorithm is usually judged in two 
ways. The first is to draw the recall precision curve according to a 
similarity measure on the database, and compare the retrieval 
ability by observing the relative up or down positions of the 
curves. This means has a shortage that if two curves of recall 
precision intersect at the approximately medium position of recall 
value, it is difficult to judge which method is relatively superior. 
The second is to use quantitative statistics on five common 
recommended tools: Nearest Neighbor, First Tier, Second Tier, E-
Measure, and Discounted Cumulative Gain (DCG), to evaluate the 
retrieval results. It is easy to analyze retrieval precision by these 
quantitative tools and then the five quantitative parameters are 
often used to compare algorithms on the Princeton Shape 
Benchmark. The time-space costs represent time complexity and 
storage complexity and can not be ignored. We think the 
computation time is more important than storage cost because 
recent storage devices have sufficient memory, and users can not 
wait for the retrieval results in a long time. Thus the computation 
time should not be given little regard. 

In the present paper, we consider that the spatial orientation of the 
polygon surfaces on a shape contain important information. We 
can image that if one person observes the shape orientation from 
six directions, front and back, left and right, and up and down, the 
features of this shape can be ascertained. We characterize this 
information by a computation algorithm. We first normalize the 
shape to obtain the invariance to affine transform, and then 
compute the bounding cube of the shape. Each plane of the cube 
representing one view plane, is partitioned into many view points 
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horizontally and vertically with a high resolution. Each view point 
on the view plane stores the orientation of the nearest face to this 
point. Here we only care about the nearest face and the orientation 
of this face relative to the eye of the view point. We analyze the 
six planes by multiresolution wavelet analysis, and lowered the 
high resolution to low frequency domains because the high 
resolution contains too much information, which must be reduced 
in order to capture the main components. We organized 
experiments on the Princeton Shape Benchmark of generic 3D 
shapes, and found that this approach leads to an improvement in 
retrieval performance for several common descriptors, such as the 
Spherical Harmonics Descriptor [2] and the Spherical Wavelet 
Descriptor [3], and also possesses fast computation time and a 
compact representation relative to the Light Field Descriptor [4]. 
The proposed descriptor can achieve better balance among the 
retrieval precision, time complexity, and space complexity. 

2. PREVIOUS WORK 
Recently, a number of 3D shape retrieval methods have been 
proposed. The reader can refer to [5] for a survey of methods 
before 2004, and to [6] for the latest methods till 2008. In the 
present paper, we discuss only some of the methods relevant to 
the present study. 

Several methods have been used to characterize the intrinsic 
attributes, such as the distances to the center [7] [2] [8], and the 
curvature [9], of 3D shapes, and to project them onto a sphere to 
form spherical functions. Since the spherical function has 2.5 
dimensions, processing is easier than that in 3D space. The 
spherical harmonics are first introduced in the 3D model retrieval 
by Vranic et al. in [7]. Kazhdan et al. [2] applied the invariance 
properties of spherical harmonics and presented an affine 
invariant descriptor based on spherical harmonics. Vranic et al. [8] 
improved this method by combining it with [7]. Novotni and 
Klein [10] presented a 3D Zernike descriptor by computing 3D 
Zernike descriptors from voxelized models as natural extensions 
of spherical harmonics based descriptors. However, for these 
methods, which are dependent on spherical functions, the small 
change in position of the sphere center can result in a significant 
noise in the feature descriptor. 

Statistics on the global geometric property of a 3D shape has been 
applied to shape matching. Ankerst et al. [11] used shape 
histograms decomposing shells and sectors around a model’s 
centroid. Osada et al. [12] matched 3D models with shape 
distributions on the Euclidean distance histograms of two arbitrary 
points of the surface. Liu et al. [13] presented a novel 3D shape 
descriptor for effective shape matching and analysis that utilized 
both local and global shape signatures, and term their descriptor 
″generalized shape distributions″ because it is an extension of 
shape distributions [12]. These methods have a common limitation 
that they are capable of only capturing similar gross shape 
properties, and are powerless to capture the detailed shape 
properties. 

After researchers found that histograms of Euclidean distances 
could not be used to pose-changing shapes such as bending or 
stretching, geodesic distances over the surface of the shape gained 
the attention. Tung and Schmitt [14] used the geodesic distances 
to construct an augmented multiresolution Reeb graph for 3D 
shape retrieval. Jain and Zhang [15] computed the spectral 
embeddings given by eigenvectors and eigenvalues of a geodesic 
distances matrix. These descriptors have an advantage in that they 

are invariant to non-rigid transformations. However, the 
computation of geodesic distances brings a big burden because the 
time cost is very high. The more recent work is that Ben-Chen and 
Gotsman [16] proposed a descriptor for characterizing shape using 
conformal factors. This descriptor is also invariant to pose 
changes, and is easy to compute. However this descriptor is 
subject to the constraint of the manifold mesh. Experiments of 
these descriptors were conducted on the McGill database [17], 
which was designed to test methods invariant to pose changes. 

Light Field Descriptor [4], which is a representative method for 
reducing a 3D shape to a 2D space, produced projections of a 3D 
shapes from many viewing angles, and then encoded these 
projections as features by Zernike moments and Fourier 
descriptors. The LFD represents a visual perception similar to that 
of humans, is considered to be the best-performing descriptor on 
the Princeton Shape Benchmark. However this descriptor must 
produce approximately one hundred projections, and has 
significant time cost. Therefore, the LFD is not applicable to the 
real-time retrieval. 

Next, we introduce the research related to the present study. 
Relative to these descriptors characterizing the intrinsic attributes, 
such as the distances to the center [7] [2] [8] [3], the curvature [9], 
Euclidean distances [11] [12] [13] or geodesic distances [14] [15] 
between vertices, and conformal geometry [16] in addition to 
Gaussian curvature, in this paper we will introduce one new 
intrinsic attribute, shape orientation. And we utilize a tool, 
wavelet, to analyze the information carried by shape orientation. 
Since wavelet analysis was first performed to image and graphics 
slightly more than 10 years ago, the wavelet has widely been 
applied to image processing, computer vision, computer graphics 
and other areas. Wavelet based algorithms define the state-of-the-
art for applications including coding, restoration, and 
segmentation. Wavelet was first introduced to 3D shape retrieval 
by Laga et al. [3]. They used spherical wavelets to analyze the 
spherical functions defined by the sampling of the distances 
between surface and the center of mass of an object. Since the 
spherical function has a shortage that it is sensitive to the choice 
of the spherical center, and from a mathematical viewport, 
spherical wavelet transform has not yet been well defined up to 
now, this descriptor has not achieved satisfactory results on 
Princeton Shape Benchmark. 

In the present paper, we will compare the proposed descriptor to 
two of the best-performing descriptors on the Princeton Shape 
Benchmark, namely, the Spherical Harmonics Descriptor, the 
Light Field Descriptor, and will analyze the performance of the 
proposed descriptor from several aspects. In addition, we will 
compare our descriptor to the Spherical Wavelet Descriptor, 
which received the best paper award at SMI06, a near method to 
our descriptor. 

3. SHAPE DESCRIPTOR 
We normalize the 3D shape into a canonical coordinate frame and 
characterize the shape orientation by setting view planes, and then 
perform one important analysis, multiresolution wavelet analysis 
on view planes. The final wavelet coefficients of low scales are 
used to be the feature vector. 

3.1 Normalization 
In the first step, shapes are aligned into a canonical coordinate 
frame by Principal Component Analysis (PCA) [18] [19] [20] to 



determine the invariant measure with respect to translation, 
rotation, reflection and scaling of the original shape. The 
covariance matrix C is approximated as follows 
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where Si and gi are the area of a triangle of a shape and the center 
of gravity, respectively, m is the center of mass of a shape, and n 
is the number of triangles of the shape. The first eigenvector of 
this covariance matrix corresponding to the largest eigenvalue 
points to the direction of the largest variance along which the 
rotation is applied. 

3.2 Sampling shape orientation from view 
planes 
We place six view planes to the six faces of the bounding cube, 
and then decompose each view plane into several view points by a 
single resolution N×N horizontally and vertically. The 
decomposition is uniform in the horizontal and vertical directions.  

The orientation of a face on the surface of a 3D shape can be 
described with the normal vector from inside to outside. We 
sample the face orientation by casting a perpendicular ray 
representing the view direction from a view point. The sampled 
face is the first one which the ray hits. 

 
Figure 1. Sampling the orientation of one face 

Figure 1 illustrates the sampling process. The point O represents a 
view point, which is the center of each small decomposed view 
plane between the horizontal grid x and the vertical grid y on a 
view plane. A ray V representing the view direction casts from the 
view point O and is perpendicular to the view plane. It hits the 
first face with the intersection P. The vector L and V illustrate the 
orientation of the face normal and the view direction respectively. 
The value of inner product (L, –V) is assigned to the view point O 
as the sampling value ox,y= (L, –V). The reason that a minus sign 
exists before the vector V is that we sample only the acute angle 
between the directions L and V. Therefore, the sampling value is 
in the range of [0, 1]. The orientation matrix O from a view plane 
is as follows. 
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We use one function form to denote the matrix, and this function 
is called the orientation function, and is given as follows. 

                        O (x,y) =ox,y, x,y∈[0, N–1]                                             (3) 
Here, we adopt the resolution N=64 to depict this function as in 
the following Figure 2 which shows one human shape, and six 
orientation sampling pictures from front and back, left and right, 
and up and bottom, corresponding to six view planes. In each of 
orientation sampling pictures, the orientation value is in [0, 1], and 
the gray value of the corresponding pixel belongs to [0, 255]. That 
is, the degree of whiteness represents the orientation value, the 
whiter the pixel, the larger the value.  

 
Figure 2. Sampling orientation of all surfaces on the 3D shape. 
The six figures are from six viewing planes including up and 
bottom, front and back, and left and right, respectively.  The 
orientation value is in [0, 1] and the gray value of the 
corresponding pixel belongs to [0, 255]. 
Since this descriptor samples the orientation of the surfaces, the 
number of sampling could be less than other descriptors [2] [3] [7] 
[8] based on sampling the distances from the gravity center to the 
surfaces directly or indirectly. The proposed descriptor samples 
only the orientation of faces and requires fewer samples, because 
only one sample point could represent one face and additional 
samples are not needed. However, when sampling the distances 
from the face to the center, different points in the face can 
generate many different distances. Therefore, the face must be 
sampled several times. Please see Figure 3 in which (a) shows O 
view point samples orientation of the triangle once, (b) shows 
when sampling the distances between one triangle and the gravity 
center C, it must sample many different values d1, d2, d3, d4, and 
so on for ensuring that the sampling rate is sufficient. We can see 
that this is one advantage of the proposed descriptor, which can 
reduce the sampling time and memory storage of sampling. In a 
later section we will present the results of experiments on the 
influence of sampling number on retrieval performance. 



 
Figure 3. Difference between (a) sampling orientation and (b) 
sampling distances. 

3.3 Multiresolution Wavelet Analysis 
The wavelet is a useful mathematical tool for signal processing. 
The wavelet has two properties. The first is the unique ability to 
capture a local significant value in a small region of the space; on 
the other hand, it also has the frequency characteristics of Fourier 
transform. 

Wavelet transform [21] and decomposition must be realized by 
virtue of one mother wavelet. We adopt the Daubechies function 
as the mother wavelet. The function bases are constructed by a 
linear combination of different scaling and translations of this 
wavelet. The scale function φ and wavelet function ψ are also 
defined according to the Daubechies wavelet, as follows. 
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where s is the scale of the wavelet decomposition, m and n are the 
translations on the x-axis and y-axis, respectively, and ψH, ψV, and 
ψD are wavelets in the horizontal, vertical, and diagonal directions, 
respectively. 

The orientation function O(x,y) described in the above equation (3) 
is decomposed from the high scale s+1 to s by the Daubechies 
wavelet, and multiresolution analysis can be realized. The initial 
scale is the orientation function O(x,y) with an initial resolution 
N×N, N=2s, which is decomposed iteratively by the following 
equations: 
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where Oφ defines the approximation of the s+1 scale function O at 
the scale s by the scale function φ, and Oψ

i (i={H,V,D}) are the 
details in the horizontal, vertical, and diagonal directions, 
respectively. 

Next we state the detailed implementation. Like Fourier transform, 
wavelet transform is separable from the two dimensional version 
of transform to a number of one dimensional transforms. This can 
simplify the complexity of transform from a high dimension to 
low dimension. For one 2D matrix, each of the rows can be 
transformed by one dimensional wavelet transform followed by 
the transformations of each of the columns. These two procedures 

can therefore be used to perform wavelet transform on the 
orientation matrix. Unlike 2D Fourier transform, the 2D wavelet 
transform is composed of only simple addition operation and 
multiplication operation, no exponential operation. And the time 
complexity of 2D Fourier transform and wavelet transform is 
O(n2logn) and O(n2) respectively and therefore wavelet behaves 
well in computation speed. 
For every viewing plane defined, we decompose the orientation 
function from the scale of s=6 to s=2. The scale of s=6 represents 
the initial state, that is, the orientation function described in 
equation (3).In addition, the scale of s=2 is the lowest resolution 
containing the main components at the lowest frequency. The 
following Table 1 shows the decomposition from the initial state 
to the two lowest scales, s=3, and s=2. Here, we omit the medium 
scales, s=5, and s=4. This table shows the wavelet decompositions 
of the front viewing plane. The leftmost column of this table is a 
front viewing orientation function, i.e., a 64×64 matrix, in which 
each entry is an orientation sampling value. And in the right 
columns of this table, there are two images of wavelet coefficients 
at two scales, and the image on the left is the second lowest scale 
s=3 which has the dimensions of 8×8, and the image on the right 
is the lowest scale s=2 which has the dimensions of 4×4. The 
whiteness represents the magnitudes of wavelet coefficients. 
Therefore, the whiter the pixel, the larger the wavelet coefficients. 
 
Table 1. Wavelet decomposition under the two lowest scales. 
The leftmost is the image of the front view orientation and two 
right images are wavelet coefficients of the two scales. 

Scale = 6 Scale = 3 Scale = 2 

   
 

3.4 Dissimilarity metric 
We use the wavelet coefficients of the final two scales as the 
feature vector V. Note that for the six view planes, there are six 
groups of wavelet coefficients and these groups of coefficients 
compose the feature vector V. Since the wavelet coefficients are 
close to the visual perception of human, we adopt the L1 norm as 
the dissimilarity metric. 

                                      D = |V1–V2|                                      (8) 

Where V1 is the feature vector of shape 1, and V2 is the feature 
vector of shape2. 

We show several examples for three human shapes and one bird 
shape in the following Table 2. In addition, the corresponding 
final two-scale wavelet coefficients of the front viewing plane are 
also listed. In the left column, there are four shapes including 
three human shapes and one bird shape. The right column is one 
group of wavelet coefficients corresponding to the relative shape. 
The coefficients are obtained from multiresolution wavelet 
analysis of the front view plane, from which we can see that the 
coefficients of the three human shapes can be discriminated from 
the coefficients of the bird shape. 



Table 2. Shapes and features. The left column is composed of 
shapes. On the right column, a part of the feature is shown as 
wavelet coefficients of front view plane at two lowest scales. 

Features (front view plane) 
Shapes 

Scale = 3 Scale = 2 

 

 

 

 

4. EXPERIMENTS 
In this section, we conduct experiments on the Princeton Shape 
Benchmark, analyze the parameters, and choose the best 
parameters for retrieval. We name this descriptor MWA 
(Multiresolution Wavelet Analysis) descriptor. We also compare 
our MWA descriptor to other descriptors and discuss the 
advantages and disadvantages of this descriptor.  

4.1 Retrieval results 
We show some examples of retrieval results on the Princeton 
Shape Benchmark. We first chose several sets of 3D shapes 
randomly, including birds, sports cars, head models, humans and 
swords. From each set, given the first shape as a query, Figure 5 
(located at the end of this paper) shows ten retrieved objects 
orderly that are most similar to query. 

4.2 Parameter analysis 
We chose three targets to analyze the retrieval performance for 
adjusting experiments parameters, the recall precision curves, the 
average recall precision, and the average computation time. 

Recall precision curves have been used extensively in 3D retrieval 
methods. The precision is defined as the fraction of objects 
relevant to the input query, and the recall is given by the fraction 
of retrieved objects from the test database. The average recall 
precision is the average of the values of recall precision on all the 
shapes. 

We tested the sampling influence on the retrieval performance. 
The sampling rate is defined as N×N, and we investigated the 
following cases. 

1) N = 128, 
2) N = 64, 
3) N = 32. 

We then computed the recall precision curves, average recall 
precision and average computation time. 

 
Figure 4. Recall precision curves 

 
Table 3. Average recall precision and computation time 

N 
Average 
Recall 

Precision 

Average 
Computation 

Time 

128 33.65% 1,468ms 

64 33.33% 839 ms 

32 31.80% 521ms 

 

We compared the retrieval effectiveness between the tests with a 
high sampling rate and two low rates, and a comparison of 
performance is shown in Figure 4 and Table 3. We found that 
even if the sampling rate is reduced from N = 128 to N = 64, the 
retrieval precision changed little. Furthermore, there is not 
remarkable decline in retrieval precision in spite of reducing the 
sampling to a great extent from N = 128 to N = 32. And also, the 
computation time can be economized in the low sampling rate. 

Therefore, we decide to adopt the N×N (N = 64) as the 
recommended sampling rate for the balance on retrieval precision 
and sampling time. 

4.3 Evaluation on the Princeton Shape 
Benchmark 
We evaluated the proposed retrieval method, MWA descriptor, on 
the Princeton Shape Benchmark, which contains a collection of 
generic 3D models, and has been distributed via website. 

We computed the quantitative statistics on seven recommended 
parameters, namely, Computation Time, Storage Size, and five 
tools for evaluating retrieval precision, Nearest Neighbor, First 
Tier, Second Tier, E-Measure, Discounted Cumulative Gain 



(DCG), in order to evaluate the retrieval results. The statistics are 
summarized by averaging these five tools over all shapes in the 
data set. See Table 4 and Table 5. 

Table 4. Computation time and storage size 
Computation Time 

(ms) 
Storage Size 

(byte) 
839 1,920 

 
Table 5. Retrieval precision 

Nearest 
Neighbor 

First 
Tier 

Second 
Tier 

E- 
Measure DCG 

58.0% 31.7% 41.3% 24.5% 58.4%

 

The storage size of a feature vector is measured by bytes. The 
average computation time, which is shown in the above Table 4, is 
obtained on a PC with a Pentium 2.0 G processor and 512 M of 
memory running Windows XP, and averaging the computation 
time over all 3D shapes. This condition is the same as that on 
which the Princeton Shape Benchmark runs. 

We compared this MWA descriptor to the following methods on 
the same Princeton Shape Benchmark, the Spherical Wavelet 
Descriptor, which won the best paper award at SMI06, a near 
method to our descriptor, and two best-performing descriptors, 
Spherical Harmonics Descriptor, Light Field Descriptor, and 
analyzed the performance of this descriptor from several aspects.  

1) Spherical Wavelet Descriptor (SWD) 

SWD is based on the spherical function of sampling the surface 
distances to the gravity center, and the usage of spherical wavelet 
transform is proposed as a tool for the analysis of 3D shapes 
represented by functions on the unit sphere. And 512 spherical 
wavelet coefficients are extracted for the new descriptor. And in 
SWD paper, the storage length is given according to the 
dimension of the feature space, that is, the dimension of feature 
vector is 512. Here in the Table 6 we give the actual storage 
requirement of 512 float coefficients, that is, 2048 bytes. 

2) Spherical Harmonics Descriptor (SHD) 

In this method, the 3D shape is first voxelized into a grid. The 
spherical function fr(θ, φ) can be described by the intersection of 
the mesh with the respective voxel. This function is analyzed by 
spherical harmonics transform to obtain the rotational invariant 
descriptor as follows: 
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3) Light Field Descriptor (LFD) 

This is representative of reducing one 3D shape to a 2D space, 
generating projections of a 3D shapes from 100 viewing angles, 
and then encoding each projection as features by 35 Zernike 
moments and 10 Fourier coefficients. LFD represents the visual 
perception similar to that of humans, and is thought to be the best-
performing descriptor on the Princeton Shape Benchmark.  

Here, we investigated the retrieval performance of the three 
methods on the Princeton Shape Benchmark. The statistics on 

SWD is taken from its paper, and the data of other two methods 
are from a summary of the survey on the Princeton Shape 
Benchmark. See Table 6 and Table 7. 

Table 6. Computation time and storage size 

Method 
Computation Time 

(ms) 
Storage Size 

(byte) 
SWD Unknown 2,048 
SHD 1,690 2,184 
LFD 3,250 4,700 

 
Table 7. Retrieval precision 

Method Nearest 
Neighbor 

First 
Tier 

Second 
Tier 

E- 
Measure DCG 

SWD 46.9% 31.4
% 39.7% 20.5% 65.4

% 

SHD 55.6% 30.9
% 41.1% 24.1% 58.4

% 

LFD 65.7% 38.0
% 48.7% 28.0% 64.3

% 

4.4 Discussion 
4.4.1 Storage analysis 
We implement the proposed method, MWA descriptor based on 
sampling the shape orientation and the multiresolution wavelet 
analysis on the sampling result. As for each viewing plane, we 
adopt wavelet coefficients on the final two scales as the feature 
vector, and the storage of wavelet coefficients is 8×8 + 4×4. Thus, 
the total storage size for the six viewing planes is 480 floating 
coefficients, or 1,920 bytes in total. The storage is slightly smaller 
than the SWD and the SHD. Compared with the LFD, MWA 
descriptor saves approximately 60% more storage space than the 
LFD. 

4.4.2 Time analysis 
The time consumption is concentrated on the sampling and 
multiresolution wavelet analysis. MWA descriptor samples the 
orientation of faces on the shape surface and need not sample 
many sampling points. As such, it is unlike SWD, based on 
sampling distances from surface to the gravity center. MWA 
adopt wavelet analysis needing smaller time complexity O(n2), 
however SHD adopt the spherical harmonics analysis with high 
computational complexity, which is determined by that of the 
associated Legendre transform, and the direct computation 
requires time of O(n3). And therefore, it is not strange that MWA 
descriptor is twice as fast as the SHD. The LFD must produce a 
large number of views for guaranteeing the retrieval precision, 
and therefore, it requires too much computation time to implement 
in real time retrieval.  

4.4.3 Analysis of the retrieval precision 
We listed the retrieval precision on five parameters. Our MWA 
descriptor performed better for the four anterior parameters, 
namely, Nearest Neighbor, First Tier, Second Tier, E-Measure, 
than the SWD, but the SWD performed better for the DCG 
parameter. In addition, MWA descriptor provides slightly better 



discrimination than the SHD, but is inferior to the LFD, which 
supplies the better retrieval precision than MWA descriptor. 

4.4.4 Merits and demerits of this descriptor 
Compared to other methods, MWA descriptor provides better 
retrieval performance and also realizes a balance between space-
time costs and retrieval precision. MWA descriptor is also robust 
with respect to various types of meshes. MWA descriptor has a 
few drawbacks. The most important of which may be that the 
descriptor does not provide the best retrieval performance on 
Princeton Shape Benchmark for generic 3D models. Another 
disadvantage is that MWA descriptor is dependent on shape 
normalization and increases the time cost on the shape alignment. 

5. CONCLUSION AND FUTURE WORK 
A new 3D shape descriptor, MWA descriptor, is proposed in the 
present paper. The proposed descriptor characterizes the 
orientations of shape faces, and performs multiresolution wavelet 
analysis on orientation signatures. The wavelet coefficients in low 
scales are used as the feature vector. We tested the MWA 
descriptor on Princeton Shape Benchmark, a data set designed for 
3D generic models, and evaluated the retrieval performance about 
time-space complexities, and retrieval precision measurements by 
Nearest Neighbor, First Tier, Second Tier, E-Measure, and DCG. 
MWA descriptor achieves better retrieval precision and also 
reduces storage space and time costs. We believe that the 
proposed descriptor may be a good choice for the real-time 
retrieval applications. 

In the future, we will consider improving this descriptor in 
characterizing shape orientation more efficiently. An idea is to get 
a rotational invariant descriptor which could reduce the 
normalization process, and enhance the retrieval precision of 
MWA descriptor. We plan to set the view points on a sphere, 
sample the orientation of surfaces, store the orientation signal into 
the spherical grid, and finally analyze the spherical signal by 
spherical tools such as spherical harmonics. The coefficients of 
spherical harmonics can be used as a rotational invariant 
descriptor. We think this idea can improve the descriptor in 
enhancing the robustness to affine transform, advancing the 
retrieval precision. However it is also a difficult problem how to 
avoid the influence that the small change in position of the sphere 
center can result in a significant noise in the feature descriptor. 
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Figure 5. Retrieval examples. The leftmost column is the query column and the 10 columns to the right are the retrieval results 
ordering by similarity. 
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