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Rapidly spreading 3D shape applications have led to the development of
content-based 3D shape retrieval research. In this paper, we propose a new re-
trieval method using Spherical Healpix. Spherical Healpix is a new framework
for efficient discretization and fast analysis or synthesis of functions defined on
the sphere. We analyzed the construction process of this structure and defined
a new Spherical Healpix Extent Function. We then analyzed this Spherical
Healpix Extent Function using an inverse-construction process from the sphere
to the Euclidean plane. We transformed the result of inverse-construction to the
frequency domain using a 2D Fourier transform, instead of spherical harmonics,
a well-known tool in spherical analysis. We obtained the low-frequency com-
ponent in the frequency domain by using a Butterworth low-pass filter. The
power spectrum of the low frequency component can be used as the feature
vector to describe a 3D shape. This descriptor is extracted in the canonical
coordinate frame; that is, each 3D-model is first normalized. We have exam-
ined this method on the Konstanz Shape Benchmark and SHREC data set, and
confirmed its efficiency. We also compared this method with other methods on
the same Konstanz Shape Benchmark and SHREC data set and evaluated the
shape retrieval performance.

1. Introduction

Over the past years, researchers have made considerable efforts to make com-
puters learn to understand, index, and retrieve texts and images representing
a wide range of concepts. With the rapidly increasing use of 3D data, a rela-
tively new data form, in many applications such as computer games, computer
aided design, virtual reality environments, biology, e-business, etc., 3D shape
data have a higher dimension and represent more complex human intelligence.
Consequently, it is becoming challenging to describe and match these data. It is
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difficult for computers to finish these tasks although any human could recognize
and distinguish them easily; accordingly, there is an increasing need to develop
computer algorithms that enable people to find their interesting 3D shape data
and discover relationships between them. Recently, much effort has been focused
on developing techniques for efficient content-based retrieval of 3D objects 1),2).
The key to content-based 3D shape matching and retrieval is to develop or find a
simple mathematical descriptor capturing and extracting the main feature of 3D
object, since 3D shapes can be discriminated by measuring and comparing these
feature descriptors. In fact, feature extraction is a process that involves reducing
the dimensions of the data from high-dimensional 3D data to low dimensional
feature data. Moreover, the low dimensional feature can be used instead with-
out any loss. The feature descriptors should have a high ability to distinguish
and should be easily comparable, for example, it could match two shapes only
to subtract two descriptors. If this could be done, the matching and retrieval
algorithm could be realized in the computer.

We present a 3D shape retrieval method based on Spherical Healpix
(Hierarchical Equal Area iso-Latitude Pixelization) 4). We utilized the internal
mechanism of Spherical Healpix in our method. We developed a new Spheri-
cal Healpix Extent Function, projected it by inverse-construction of Spherical
Healpix, and analyzed it in the frequency domain by taking two dimensional
Fourier transform and using a Butterworth low pass filter. The low frequency
part is extracted for matching. We tested this method on a recently developed
benchmark database, Konstanz Shape Benchmark 2),3) and SHREC data set 24),
and evaluated the efficiency. We also compared our method with four other
methods and evaluated the present method.

The outline of the remainder of the paper is as follows: in the next section we
briefly review the previous studies on 3D model retrieval and relevant methods. In
Section 3 we describe the method that we developed for feature computation. We
will put emphasis on internal mechanism analysis of Spherical Healpix and how
to apply Spherical Healpix to our feature computation. Section 4 describes the
feature vector and similarity metric computations employed for feature matching.
Section 5 gives the experimental results and Section 6 presents the conclusions
of the study.
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2. Previous Work

In this section, we discuss recent 3D retrieval methods and classify them into
two broad categories for shape matching, namely, feature distribution and shape
descriptors. In the end, we also introduce the other relevant developments.

2.1 Feature Distribution
It is fast and easy to compare the feature distributions of models, since it makes

some data statistics on elements of shape. Osada, et al. 5) match 3D models
with histograms of Euclidean distances between two random points on the shape
surface and use these to measure the global geometric properties of the object.
They called the global geometric property D2 shape function. Another method
developed by Ohbuchi, et al. 6) extends the D2 shape function by considering
the inner product of the normals of sampled point pairs. Ankerst, et al. 7) used
shape histograms decomposing shells and sectors around a model’s centroid. Liu,
et al. 8) utilize the directional histogram model to characterize 3D shapes. The
shape can be described by the thickness distribution in the directions per latitude
and longitude. Ohbuchi, et al. 9) perform the shape analysis by using the moments
of inertia about the principal axes of the model. Liu, et al. 10) present a novel
3D shape descriptor for effective shape matching and analysis that utilizes both
local and global shape signatures. They termed this descriptor “generalized shape
distributions” since it is an extension of shape distributions 5). All the feature
distribution methods have a common limitation that they are capable of only
capturing similar gross shape properties, and are powerless to capture the detailed
shape properties.

2.2 Shape Descriptors
As a representative example, spherical harmonics 11) is applied in a wide variety

of fields including earth physics, image analysis, and biology. It was first intro-
duced in the 3D model retrieval by Vranic in Ref. 12). Funkhouser, et al. 13) pre-
sented a rotational invariant descriptor based on spherical harmonics. Vranic 14)

improved this method 13) by combining it with Ref. 12). Saupe 15) constructed
a moment-based descriptor by representing a spherical function using spherical
harmonics. Feature extraction is performed using a rendered perspective projec-
tion of the object on an enclosing sphere 16). It is considered as a shading-based

shape descriptor. Novotni and Klein 17) present a 3D Zernike descriptor by com-
puting 3D Zernike descriptors from voxelized models as natural extensions of
spherical harmonics based descriptors. Liu, et al. 25) applied the multiresolution
wavelet analysis on shape orientation for 3D shape retrieval.

2.3 Other Related Developments
Podolak, et al. 18) describe a planar reflective symmetry transform that cap-

tures a continuous measure of the reflectional symmetry of a shape with respect
to all possible planes. The symmetry transform is useful for shape matching.
Bespalov, et al. 19) presented several distinctive benchmark datasets for evaluat-
ing techniques for automated classification and retrieval of CAD objects.

In this present paper, we compare our method with four typical methods, shape
distributions 5) and shape histograms on shells and sectors 7) — the two methods
in feature distribution, rotational invariant spherical harmonics 13) and rays with
spherical harmonics 12),14) — the other two methods about shape descriptors.

3. Feature Computation

In this section, we will focus on analyzing the internal mechanism of Spherical
Healpix, and combining it with our new proposal to compute the feature of 3D
shape.

3.1 Pose Estimation
As the first step, we use Principle Component Analysis (PCA) 20)–22) to deter-

mine the invariant measure with respect to translation, rotation, reflection and
scaling of the original shape. In the PCA method, we should point out that the
covariance matrix is approximated as follows

CI =
1
n

n∑
i=1

Si(gi − mI)(gi − mI)T (1)

Where Si and gi is the area of a triangle of a shape, and the center of gravity
respectively, and mI is the center of gravity of a shape, and n is the number of
triangles of the shape.

3.2 Spherical Healpix
Healpix, Hierarchical Equal Area iso-Latitude Pixelization, is a genuinely

curvilinear partition of the sphere into exactly equal area quadrilaterals of varying
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Fig. 1 Spherical Healpix 4).

shape. The base-resolution consists of twelve base pixels (see Fig. 1).
The resolution is expressed by the parameter Ns that defines the number of

divisions along the side of a base-resolution pixel that is required to reach a
desired high-resolution partition. According to Ns resolution, the spherical grid
can produce Np sampling points.

Np = 12N2
s (2)

Every point belongs to a partition, which has an area Sp that is equal to that of
all the other partitions.

Sp =
π

3N2
s

(3)

3.3 The Construction Process
We analyze the construction process in which one projection scheme exists from

Euclidean plane coordinate (x, y) to spherical coordinate (θ, φ).
Given a grid resolution parameter Ns, for each base resolution pixel (face), use

(x, y) coordinates (index) in the Euclidean Plane to construct a square (where
x ∈ [0, Ns − 1], and y ∈ [0, Ns − 1]). The black points on the left plane in Fig. 2
are (x, y) coordinates, actually indices. Map the square to a sphere by using the
following equations.⎧⎪⎨

⎪⎩
i = F1(f)Ns − (x + y) − 1

j =
F2(f)Ns + (x − y) + s

2

(4)

Here i ∈ [1, 4Ns − 1] is the index of iso-latitude ring of the sphere and j is the
index of pixel in this ring. And f is the base-resolution pixel (face) index number

Fig. 2 Construction of Spherical Healpix.

running in [0, 11]. The two functions F1(f) and F2(f) index the location of the
southernmost vertex of each base resolution pixel (face), and s ∈ {0, 1} is an
auxiliary index, describing phase shifts of the index j along iso-latitude rings.
From two indices i and j, compute the corresponding spherical angular (θi, φj)
using the two following equations. This spherical angular (θi, φj) could fix the
black points on the right sphere in Fig. 2.

When i ∈ {[1, Ns − 1] ∪ [3Ns + 1, 4Ns − 1]},{
i′ = i, i ∈ [1, Ns − 1]
i′ = 4Ns − i, i ∈ [3Ns + 1, 4Ns − 1]

⎧⎪⎨
⎪⎩

θi = cos−1

(
1 − i′2

3N2
s

)

φj =
π

2i′
(
j − s

2

) (5)

When i ∈ [Ns, 3Ns],{
i′ = i, i ∈ [Ns, 2Ns]

i′ = 4Ns − i, i ∈ [2Ns + 1, 3Ns]
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Fig. 3 Grid resolution of one face in Spherical Healpix 4).

⎧⎪⎪⎨
⎪⎪⎩

θi = cos−1

(
4
3
− 2i′

3Ns

)

φj =
π

2Ns

(
j − s

2

) (6)

Figure 2 depicts the constructing process of one face (In total 12 faces) from
Euclidean plane to the light-gray region on the sphere. A higher resolution can
be achieved by increasing Ns in the Euclidean plane and then projecting onto
the sphere to form a finer Spherical Healpix structure.

In Fig. 3, the grid is hierarchically subdivided (clockwise from the upper-left
panel) with a grid-resolution parameter Ns = 1, 2, 4, 8 and the total number of
sampling Np = 12, 48, 192, 768. The black points represent the sampling results.

3.4 The Problem with Conventional Spherical Extent Function
In the analysis of a discretized function on a sphere (e.g., spherical harmonics,

spherical convolutions, spherical wavelet decomposition, and spherical topology),
the spherical sampling exerts a strong influence.

In the common sampling stage, the spherical function is sampled using an
n × n spherical grid defined in terms of the latitudinal and longitudinal angles

Table 1 Parameters of two extent functions.

Ns S B 2B × 2B
8 768 32 4096
16 3072 64 16384
32 12288 128 65536

(θ, φ). The sampling intervals on latitudinal and longitudinal angles are Δθ and
Δφ. This uniform sampling scheme has one major problem that the number
of sampling points near the south and north poles is larger than that near the
equator. As a result, some areas are over-sampled and other areas are under-
sampled. This problem shows that the sampling is regular in spherical coordinate,
but not in the Euclidean coordinate.

The Spherical Healpix projection is a good solution to this problem.
3.5 Spherical Healpix Extent Function
We defined a new spherical extent function based on Spherical Healpix.
Firstly, we divided the sphere into 12 faces according to the Healpix base solu-

tion pixels.
f0, f1, . . . , fk, . . . f11, k ∈ [0, 11] (7)

At a resolution level Ns, each face contains Ns × Ns sampling points. Rays
extend along the directions (θi, φj) (Eqs. (5) and (6)) of the sampling points from
the center of gravity of one 3D shape and intersect with the shape’s surface. The
farthest distance dk,i,j represents the spherical extent of the 3D shape.

The new spherical extent function can be defined as:
fk(θi, φj) = dk,i,j , i, j ∈ [0, Ns − 1] (8)

In our method, we employed three different resolutions of Spherical Healpix;
the corresponding total sampling points S of Spherical Healpix extent function,
and sampling rate of the conventional spherical extent function are given in
Table 1. The sampling rate of the conventional spherical extent function is
2B × 2B as follows, and B should be large enough (B ≥ 32) to ensure that
sufficient information about one object can be captured.

θi = (2i + 1)π/2B, φj = jπ/B, i, j ∈ [0, 2B − 1].
3.6 Analysis of Spherical Healpix Extent Function
In our 3D shape retrieval method, we propose a new analysis method for the

Spherical Healpix extent function.
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Fig. 4 Inverse-construction of Spherical Healpix.

Spherical harmonics cannot be directly used to analyze the Spherical Healpix
extent function since the sampling of Spherical Healpix is irregular in the spherical
coordinates.

We devised a new scheme that uses the inverse-construction of Spherical
Healpix to analyze Spherical Healpix extent function.

For the extent function fk(θi, φj) = dk,i,j , i, j ∈ [0, Ns − 1], we projected each
face (e.g., one light-gray face in Fig. 4) to the Euclidean plane, and were able
to construct a (x, y) plane function without information loss by exploiting the
property of Spherical Healpix. The mapping relation is as follows.{

(θi, φj) → (x, y)
fk(θi, φj) → fk(x, y)

(9)

The correspondence relation is the same as that for the construction process.
Here, x, y ∈ [0, Ns − 1], and k ∈ [0, 11].

The function is defined as follows.
fk(x, y) = dk,x,y (10)

Since the new mapping function fk(x, y) is regularly distributed in the Eu-
clidean plane, we will analyze it by firstly transforming the data into the fre-
quency domain using the conventional method, namely, by taking 2D Fourier
transform.

The 2D Fourier Transform is defined as

Fk(u, v) =
∫∫

fk(x, y) exp(−j2π(ux + vy))dxdy (11)

And its discrete form is given by

Table 2 Filter parameters.

n 8 16 32
D0 n/2 n/4 n/6 n/8
σ 1 2 3 4 5

Fk(u, v) =
1

N2
s

Ns−1∑
x=0

Ns−1∑
y=0

fk(x, y) exp
(
−j2π

(ux + vy)
Ns

)
,

u, v ∈ [0, n − 1]. (12)

Here Fk(u, v) represents the function in the frequency domain, and its center of
frequency is (u, v) = (n/2, n/2). We choose n = Ns, and adopt the 2D Fast
Fourier Transform algorithm for reducing the computation time.
|F (u, v)| is denoted as the power spectrum of f(x, y).
3.7 Frequency Domain Analysis
To obtain low frequency components and filter high frequency components, we

apply a filter to the frequency domain function.
G(u, v) = H(u, v)F (u, v) (13)

Where H(u, v) is a filter function. We chose Butterworth low pass filter 23) as the
filter, it is described by

H(u, v) =
1

1 + [D(u, v)/D0]2σ
(14)

Where D0 is the cut-off frequency, and σ is the order.

D(u, v) = [(u − n/2)2 + (v − n/2)2]1/2 (15)

In experiments, we adopt the parameter values given in Table 2 and test these
parameters for finding the best result.

4. Feature Vector and Similarity Metric

Finally, the power spectrum |G(u, v)| is computed for the feature vector of the
3D shape.The degree of dissimilarity between two 3D shapes can be measured
using the deviation between two corresponding feature vectors V1 and V2. We
applied the following three metrics.
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(1) L1 Distance Metric

D = ‖V1 − V2‖

=
11∑

k=0

n−1∑
i=0

n−1∑
j=0

|v1,k,i,j − v2,k,i,j | (16)

(2) L2 Distance Metric

D = ‖V1 − V2‖2

=

⎛
⎝ 11∑

k=0

n−1∑
i=0

n−1∑
j=0

(v1,k,i,j − v2,k,i,j)2

⎞
⎠

1
2

(17)

(3) Similarity Relation Metric
D = 1 − (V1 · V2)/ (‖V1‖ ‖V2‖) (18)

After testing, we found that the L1 Distance Metric gave the best retrieval
results and it could be fit for comparison in the frequency domain.

5. Experiment Results

5.1 Retrieval Results
We show some examples of our retrieval results on the Konstanz Shape Bench-

mark. Firstly, we chose several sets of 3D shapes randomly including bottles,
dogs, chairs, helicopters, humans and plants. From any set, given one shape as
a query, Table 3 represents the five most similar objects with the query orderly.

5.2 Experiment Means
We firstly chose the Konstanz Shape Benchmark for this experiment because

this benchmark contains a considerable number of 3D shapes, in total 1,838 3D
objects. From this set of 3D shapes, 472 objects were classified into 55 different
model classes including animals, transportation tools, furniture, humans, plants,
etc., and the remainder of the objects were left as unclassified. The unclassified
objects can impact the evaluation result as a strong noise.

We chose two parameters to evaluate the performance, the Recall-Precision
(R-P) Curves and the Average Recall-Precision (R-P).

Recall-Precision Curves (R-P Curves) have been used extensively in 3D re-
trieval methods. The precision is defined as the fraction of the objects relevant

Table 3 Retrieval examples using our method for the Konstanz Shape Benchmark.

to the input query, and the recall is given by the fraction of retrieved objects
from the test database.

5.3 Parameters Analysis
We tested three resolution levels in Spherical Healpix.

Ns = 8, 16, 32.

We computed all the processes except for the last frequency filter procedure
(Section 3.7). The power spectrum |F (u, v)| corresponds with the resolution
levels. The dimension of the feature vector is

12 × n × n, n = 8, 16, 32.

From the R-P Curves (see Fig. 5) and Average R-P (see Table 4), we found
that increasing the resolution level improves the retrieval performance. However,
the performance decreases if n ≥ 32.
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Fig. 5 R-P Curves of different dimensions.

Table 4 Average R-P of different dimensions.

Parameters Average R-P
n = 8 0.261
n = 16 0.272
n = 32 0.269

We analyzed the causes of this reduction in performance. We conjecture the
excessive sampling and division on spherical grid in Spherical Healpix can result
in information redundancy. This aspect differs from conventional sampling which
requires that the sampling rate must be sufficiently large.

Therefore, we considered using a frequency domain filter to improve the re-
trieval performance. After performing all the tests on related parameters, we
selected D0 = n/4, and σ = 2 for the condition n = 32, and truncated to n = 8
to preserve the low frequency components. These settings resulted in the best
result, and the dimension of feature vector is given by

Dv = 12 × 8 × 8 = 768
We compared the retrieval effectiveness between the tests with and without a

filter, and performance comparison is shown in Fig. 6 and Table 5.

Fig. 6 R-P Curves of filter effect.

Table 5 Average R-P of filter effect.

Parameters Average R-P
Without Filter 0.269

With Filter 0.286

5.4 Comparison with Other Retrieval Methods on Konstanz Shape
Benchmark

We compared our method with the following methods. In ( 1 ) and ( 2 ), we
programmed and implemented the algorithms again, and compared in the same
conditions. In ( 3 ) and ( 4 ), we used the experimental results summarized in
Ref. 2) in which ( 3 ) and ( 4 ) were tested using the same Konstanz Shape Bench-
mark as our experiment.
( 1 ) Shape histograms on Shells and Sectors (SSS) 7)

In this method, the 3D shape can be described as histograms of point
fractions belonging to different partitioning shape shells or sectors.

( 2 ) Shape Distribution (SD) 5)

This algorithm sampled the probability distribution from the shape sur-
face, and computed a histogram of distances between pairs of points. The
similarity between two shapes can be measured from the distribution.

( 3 ) Rotation Invariant Spherical Harmonics descriptor (RI-SH) 13)

In this method, firstly, the 3D shape is voxelized into a grid. The spher-
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ical function fr(θ, φ) can be described by the intersection of the mesh with
the respective voxel. This function is analyzed by Spherical Harmonics
Transform to obtain the rotational invariant descriptor.

fr(θ, φ) =
∑
l≥0

∑
|m|≤l

fl,mY m
l (θ, φ) (19)

( 4 ) Rays with Spherical Harmonics (Rays-SH) 12),14)

This method was proposed as an improvement of the above-mentioned
RI-SH method. In this method, the spherical extent function is defined
using the spherical sampling on the grid 2B×2B. The spherical directions
uij are defined as follows.

uij = (θi, φj), θi = (2i + 1)π/2B, φj = jπ/B, i, j ∈ [0, 2B − 1].
The spherical function is defined as f(θi, φj) = dij , and dij is the largest

distance from the center of gravity to the surface of shape in the direction
uij . This spherical function is characterized by spherical harmonics.

f(θ, φ) =
∑
l≥0

∑
|m|≤l

fl,mY m
l (θ, φ) (20)

The harmonic coefficients fl,m were used for constructing the descriptor.
Here, we refer to our 3D retrieval method based on Spherical Healpix as “SHX”.

We compared SHX with the four above-mentioned methods on Konstanz Shape
Benchmark and show the results for Recall-Precision(R-P) Curves and Aver-
age Recall-Precision(R-P) and Average Computation Time on all 3D shapes in
Table 6 and Fig. 7.

From the analysis of parameters and comparison with other methods on Kon-
stanz Shape Benchmark, we believe that the SHX method has several advantages

Table 6 Comparison of SHX with other methods.

Methods Average R-P Average Computation Time
SHX 0.286 80ms

Rays-SH 0.281 205ms
RI-SH 0.221 110ms

SD 0.193 70ms
SSS 0.171 10ms

over the other methods. At the same time, we discuss the shortfalls of the SHX
method.

1) In terms of Average Recall Precision, the SHX method exceeds the other
four methods. But results of Rays-SH method are very close to the SHX
method.

2) The Recall Precision Curves results indicate that SHX method lies in upper
position, especially for Recall ∈ [0.1, 0.5], and indicates that the SHX has
higher retrieval precision than other methods. However, in the Recall ∈
[0.8, 1.0] region, the performance of the SHX method falls off rapidly.

3) We used 2D Fast Fourier Transform as analysis tool in our algorithm, and
its speed is clearly faster than methods based on spherical harmonics. In
the other aspect, the sampling is faster than them. For these two reasons,
the SHX method is faster than the Rays-SH and RI-SH methods. However,
the SHX method is inferior to the SD and SSS statistical methods in terms
of computation speed.

Fig. 7 Comparison of the Recall-Precision Curves of our method “SHX” and other methods.
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Table 7 Statistics on SHX method.

Method NN First Tier Second Tier E-Measure DCG
SHX 0.58 0.30 0.39 0.23 0.59

Table 8 Statistics on other methods.

Method NN First Tier Second Tier E-Measure DCG
RI-SH 0.55 0.29 0.39 0.22 0.57

SD 0.31 0.15 0.21 0.12 0.43
SSS 0.26 0.11 0.17 0.09 0.40

5.5 Evaluate SHX Method on SHREC Data Set
We also evaluated this retrieval method SHX on SHREC data set, in which

one collection consists of 1,814 generic 3D models, and has been distributed via
the SHREC 2008 website 24).

We computed the quantitative statistics on five recommended parameters 26),
Nearest Neighbor (NN), First Tier, Second Tier, E-Measure, Discounted Cumu-
lative Gain (DCG), for evaluation of retrieval results. The statistics in Table 7
are summarized by averaging these five parameters over all 1,814 shapes in the
data set.

We listed the statistics in Table 8 on the other three methods.
Here the results of SD and SSS are from our implementation, and the descriptor

of RI-SH is computed using the executive binary file distributed by the authors
of the RI-SH paper (We could not find the details of the implementation or test
results on SHREC data set about Rays-SH method. Refer to Section 5.4 about
the evaluation of the method on Konstanz Shape Benchmark). Here we will
compare RI-SH, SD, and SSS, the three methods with SHX method on SHREC
data set.

Through comparing our method with the RI-SH, SD and SSS methods, we
found that the SHX descriptor outperforms SD and SSS methods completely,
and provides slightly better discrimination than RI-SH descriptor. And SHX
descriptor behaves well especially on Nearest Neighbor parameter. This indicates
that this SHX descriptor has one advantage, that is, it is easy to help users search
one nearest shape belonging to the same class.

Here we show the storage size of SHX feature vector and the average compu-

Table 9 Storage size and average computation time of SHX.

Method Storage size (bytes) Average Computation Time (s)
SHX 3,072 0.47

Table 10 Storage size and average computation time of other methods.

Method Storage size (bytes) Average Computation Time (s)
RI-SH 2,184 0.81

SD 256 0.42
SSS 136 0.18

tation time on SHREC data set.
The storage size of a feature vector is measured by byte. The average com-

putation time, which is shown in Table 9, is obtained on a PC with Pentium
Core2 Duo-3.0 G processor and 2.0G memory running Windows XP, and aver-
aging computation time on all the 3D shapes.

We listed the storage size and average computation time on the other three
methods in Table 10.

We can observe that the SHX method needs more memory storage than all
other methods. This is a weakness of SHX method. In the aspect of computation
speed, SD and SSS methods belong to statistical methods, and thus have higher
speed than SHX method, but SHX is quicker than RI-SH method. It is a future
task to find how to reduce the dimensionality of SHX feature vector.

6. Conclusion and Future Work

In this paper, we proposed a 3D shape retrieval method based on Spherical
Healpix. We utilized the internal mechanism of Spherical Healpix in this method.
We developed a Spherical Healpix Extent Function, projected it onto the Eu-
clidean plane using the inverse-construction of Spherical Healpix, and analyzed
it in a frequency domain using the 2 dimensional Fourier transform and the But-
terworth low pass filter. The results of the test on Konstanz Shape Benchmark
and SHREC data set demonstrated the efficiency of this method. This method
is suitable for practical applications because it achieves a good performance and
it is easy to help users search one nearest shape belonging to the same class.

In the future, we intend to consider several aspects. Firstly, it is essential to
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eliminate pose estimation in the method and find a rotational invariant descriptor
using Spherical Healpix. Secondly, we intend to reduce the dimension of the
feature vector by employing another frequency domain method. Finally, we also
hope to enhance the retrieval performance of the method.
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