

THE FOLDED SHAPE RESTORATION AND THE RENDERING
METHOD OF ORIGAMI FROM THE CREASE PATTERN

Jun Mitani
University of Tsukuba, JAPAN / PRESTO, JST, JAPAN

ABSTRACT: Recently, it is not uncommon to use a computer to research on Origami. We
developed a dedicated editor, ORIPA, for designing the crease pattern of Origami intending to
establish the basis of the future research on Origami. The editor has unique features that the folded
shape of flat Origami (Origami which is folded flat) is restored from the crease pattern and the CG
image of that can be generated. The users can input crease patterns by using a simple user interface.
We expect that this editor can have beneficial influence on Origami researches. In this paper, we
introduce the user interface of this system and the inner algorithms of rendering. Restoring the
folded shape of Origami from the crease pattern can be replaced by the problem of finding valid
overlap relations between all two faces. This relation can be represented by a matrix. To define the
matrix is not a simple problem because it is proven that this problem belongs to a class of
NP-complete. Although ORIPA finds the valid overlap relations by using brute-force approach, the
answers are found in reasonable time due to the elimination of the invalid overlap relations at the
early stage of estimation. After a valid overlap order of folded Origami is found, there is another
problem; how to display it. In flat Origami, some cases exist that have a closed loop in the overlap
order of faces after they are folded. It is difficult to display this shape correctly on the screen
because Origami is usually represented by a set of plane polygons of zero thickness as is generally
used in CG and all faces are placed on the same plane. In the proposed method, we use the matrix
that represents the overlap relation and a face ID buffer and the concept of which is similar to a Z
buffer in the z-buffer algorithm. With this buffer, the face located in the uppermost is monitored in
each pixel at the rendering stage. By using this buffer, we propose three rendering styles. Lastly, we
introduce applications that use the exported data from ORIPA.

Keywords: Origami, Computer Graphics, Computational Geometry, Rendering
………………………………………………………………………………………………………....

1. INTRODUCTION
Origami is known as a Japanese art and play
that creates a variety of shapes by folding a
square sheet of paper. The process of how to
fold the sheet of paper to make the objective
figure is challenging and compatible with
geometrical methods. Therefore, many studies
about Origami had been done in the field of
mathematics. In 2006, an international
conference 4OSME (The Fourth International
Conference on Origami in Science,
Mathematics, and Education) was held in
Pasadena. As the name of the conference
shows, Origami is considered as a topic of

Science, Mathematics, and Education today.
In 2007, a book that covers a huge number of
studies about Origami was published by
Demaine and O’Rourke[2]. A lot of theorems
and their proofs related with Origami are
introduced in the book. The fruits of the
studies have been applied to recent
engineering, such as designing foldable
structures and education of geometry.
Recently, it is not unusual to use a computer
for studying Origami. Some softwares have
been designed that simulate folding paper or
assist designing new works. But there are
still not efficient Origami modeling tools that

PROCEEDINGS
13th INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS
August 4-8, 2008, Dresden (Germany)
ISBN: 978-3-86780-042-6

2

can build Origami models in digital data
which have information for both of structure
and geometry, because directly inputting
these data into a computer needs difficult
process. So, we focused to input crease
pattern first and then calculate the folded
figures in a computer. With this approach, we
can reduce a cost for modeling Origami
structure. In this paper, we introduce a
dedicated Origami Pattern Editor, named
ORIPA. This editor has UI for inputting a
crease pattern efficiently and features for
estimating folded figures. ORIPA can
discriminate whether the pattern can be folded
into flat or not. When the pattern can be
folded into flat, ORIPA outputs the rendered
image. The ORIPA is released on the web[6].
So anyone can download and try to use. We
hope this application could contribute toward
future study of Origami.
We explain the crease patterns of Origami and
the user interface of ORIPA in Section 2. In
Section 3, we describe the matrix expression
of overlap relation of faces. In Section 4, we
describe a method for rendering. The results
are shown in Section 5 and applications that
use the exported data from ORIPA are
introduced in Section 6. Our conclusions and
future research are described in Section 7.

2. INPUT CREASE PATTERNS
In this section, we describe the crease pattern
of Origami and the features of ORIPA for
inputting crease patterns.

2.1 Crease patterns of Origami
The crease pattern of Origami is generated by
folding a sheet of paper and consists of
Mountain-fold lines and Valley-fold lines.
Generally, folding is done by referring
symbols (points or lines on the crease pattern).
The ways of the fold is clarified as 7 classes
by Fujita and Hatori as follows (Huzita’s
axioms and Hatori’s addition [2][4]).
(1) Given two points p1 and p2, we can fold a

line connecting them.
(2) Given two points p1 and p2, we can fold

p1 onto p2.

(3) Given two lines l1 and l2, we can fold line
l1 onto l2.

(4) Given as point p1 and a line l1, we can
make a fold perpendicular to l1 passing
through the point p1.

(5) Given two points p1 and p2 and a line l1,
we can make a fold that places p1 onto l1
and passes through the point p2.

(6) Given two points p1 and p2 and two lines
l1 and l2, we can make a fold that places
p1 onto line l1 and places p2 onto line l2.

(7) Given a points p1 and two lines l1 and l2,
we can make a fold perpendicular to l2
that places p1 onto line l1.

Figure 1 shows diagrams of corresponding
operations.

Figure 1: The seven operations of Hujita’s

axioms and Hatori’s addition.

presented by MITANI, Jun

3

2.2 User interface
In the seven operations of folding, from (1) to
(4) are commonly used for folding general
Origami. Instead, (5), (6), and (7) are rare. We
designed the user interface of ORIPA so that
the user can easily input the general patterns
appeared by using the folding from (1) to (4).
And considering the patterns well appeared in
the common Origami, we implemented the
following 9 commands to ORIPA.
1. A bisector of a specified angle.
2. A perpendicular bisector of two specified

points.
3. A line that connects two specified points.
4. A line that passes two specified points.
5. A line that passes a specified point and

perpendicular of a specified line.
6. Three lines that connect specified three

points and the incenter of the triangle.
7. Lines that locate symmetric position

against specified lines.
8. A line that connects two specified points.
9. A line that has specified length and angle.
With these commands, user can input crease
patterns more efficiently than using standard
2D drawing tools. Figure 2 is the main
Window of ORIPA and the crease pattern of
Crane inputted by using the above
commands.

Figure 2: Application window of ORIPA with

the crease pattern of Crane.

2.3 Validity check for flat Origami
A crease pattern inputted by a user sometimes
may invalid for flat Origami. This means that
Origami may not be folded into flat even
though that is folded following the pattern.
The conditions of a crease pattern around a
single vertex in flat Origami should satisfy the
following conditions [2].
- The number of creases is even.
- The number of mountains and the number

of valleys differ by ±2.
- The sum of the alternate angles about the

vertex is π.
All inner vertices have to satisfy the above
conditions. If one or more vertices exist that
do not satisfy them, the pattern cannot be
folded into flat. ORIPA checks the conditions
for each vertex and highlights the invalid
vertices to notify the users.

3. OVERLAP RELATION OF FACES
After a valid crease pattern is inputted,
ORIPA estimates the folded figure by
calculating the locations of all polygonal
faces in the crease pattern and the overlap
relation of them. In this section we describe a
matrix that represents the overlap relations of
faces.

3.1 Matrix expression of overlap relation
The order of overlapping of faces can be
serially defined when no closed loops exist.
But when closed-loops exist, it cannot. For
example, as a “Twist Fold” (See Figure 3) has
a closed loop of overlapping order of faces,
we cannot say which face is located lowest or
uppermost. The face (A) is on (B), (B) is on
(C), (C) is on (D), and (D) is on (A) in the
folded shape in Figure 3. When the number of
polygonal faces included in the Origami piece
is N, an N x N matrix can describe all overlap
relations. We refer to this matrix as the OR
matrix hereinafter. Each element mij of this
matrix is set to one of the following three
states:
・ U (Upper) : Fi is located above Fj.
・ L (Lower) : Fi is located below Fj.

presented by MITANI, Jun

4

・ - (Undefined) : Fi and Fj do not overlap.
For example, the OR matrix for the simple
folding shown in Figure 4 (a) and (b) is
defined as (c). (In this case, the OR matrix is
uniquely defined from the crease pattern.
There are cases in which multiple different
OR matrices can be defined from a single
crease pattern.)

Figure 3: The crease pattern and the folded

shape of a “Twist fold” (Dash lines and solid
lines in the crease pattern are valley and

mountain fold respectively).

 Figure 4: A simple crease pattern (a), side
view of the folded one (b) and the OR matrix
(c).

3.2 Defining the overlap relation
Defining the overlap relation between every
two faces from the crease pattern is a difficult
problem. Bern and Hayes proved the
problem of determining the overlap relation
from an arbitrary crease pattern to be NP
complete[1]. Although determining every
element of the OR matrix from a crease
pattern is not easy, it can be obtained from a
brute-force approach because the number of
possible cases is finite. In the present paper,
we do not discuss the detail of finding valid
overlap relations. Although ORIPA finds the

valid overlap relations by using brute-force
approach, the answers can be found in
reasonable time due to the elimination of the
invalid overlap relations at the early stage of
estimation. ORIPA divides each polygonal
face in the folded shape into sub-faces, then
the sub-faces are grouped so that the
overlapping order of them can be defined
serially. After valid overlap orders in each
group are extracted, valid order matrixes (no
contradictions arise for all groups) are
searched.

4. RENDERING
It is sometimes difficult to display the shape
of flat Origami correctly on the screen when
the Origami is expressed by sets of plane
polygons of zero thickness as is generally
used in CG because all faces are placed on the
same plane. The painter's algorithm (also
known as priority fill) is one method of
rendering the appearance of flat Origami,
although this algorithm fails when a
closed-loop exists in the face overlap order.
Although the Z buffer algorithm, which is
used for rendering 3D objects, works well for
objects that have closed-loops in 3D space, it
does not work because all faces have the same
depth (z-value) in flat Origami. In this section,
we propose a new rendering technique to
solve this problem.

4.1 Render to face ID buffer
Here, we describe how to render folded
Origami based on the OR matrix estimated
from the crease pattern. The basic concept of
the proposed approach is similar to the
z-buffer method. We prepare a buffer that
holds the ID (unsigned integer) of faces with
the same size as the rendering area (referred
to hereafter as the “face ID buffer”). The ID
of the face that is placed uppermost at each
pixel is stored in the corresponding position
of this buffer. The ID is stored using the
scanline algorithm used in the z-buffer
method. Here, the scanlined face ID is

presented by MITANI, Jun

5

overwritten on the buffer only when the
position of the buffer is empty or the element
mij is “U” (Upper). (The i is scanlined face ID,
and the j is ID already stored in the position.)

4.2 Line style rendering
We then use the Sobel filter that is used in

image processing to extract edges to the face
ID buffer. With this filter, we can obtain
contours of faces. We export the obtained
contours to the frame buffer.

4.3 Technical illustration style rendering
Every face in the flat Origami is placed on

the same plane and has the same normal
direction. Therefore, all of the faces become
the same color when the common rendering
method is used, which does not use global
illumination. This provides poor
comprehension of the structure of the Origami
piece. Therefore, we add colors to faces to
make the structure of the Origami piece easily
to be understood using a new approach based
on the heuristics.
As a generally experienced rule, folded lines
in the vicinity of the valley become dark
because little light reaches this area. On the
other hand, folded lines in the vicinity of the
peak become bright. Then, we set the
brightness B to each vertex of polygonal faces
according to the value M – V, where M and V
are the number of mountains and valleys,
respectively, of folded lines connected to the
vertex on the contour of a face.
The color of each pixel in a face is calculated
by linearly interpolating the colors of vertices
on the contour. After that, we add gradation to
make the results natural.

4.4 Pseudo shading
To facilitate the recognition of the structure

of overlapping faces, it is desirable that
reasonable shading is applied. Again, it is
impossible to use standard CG rendering to
answer this request because the target shape is
flat and all faces are placed on the same plane.
Here, we propose a new method that adds
pseudo shading using a concept similar to

Ambient Occlusion[5]. In the method of
Ambient occlusion, the intensity of ambient
light is adjusted according to the ratio of the
size of a shield object on a sphere that is
centered at the target position. For flat
Origami, we only need to consider blocking
by upper faces. Therefore, we use the model
in which the intensity of ambient light at a
point in the shaded area (Figure 5(a)) is
linearly reduced with the ratio of the size of
the blocking object in a circle centered at the
position, as shown in the following equation:
 𝐼𝐼 = 1 − 𝑠𝑠

𝑆𝑆

where I is the pseudo intensity of ambient
light, S is the area of the circle centered at the
position, and s is the sum of the area covered
by the upper faces as shown in Figure 5(b).
The value I is calculated for each pixcel and
the blightness of the pixcel is multiplied by
this.

Figure 5: (a) Lower face has the shaded area.
(b) The intensity of ambient light at P is
estimated by using s and S.

5. RESULT
The features mentioned in previous sections
were implemented onto ORIPA. ORIPA has 4
windows as shown in Figure 6. They are the
designing window with which users input a
crease pattern (a), the validity check window
which notices invalid creases when they
cannot be folded into flat (b), the folded shape
display window which displays the folded
shape with transparency (c), and the rendering
window which shows the rendered result
using our method mentioned in the previous
section (d). The application was developed by
using Java on a standard PC. Figure 7 is an
example of simple Twist Fold which has a

presented by MITANI, Jun

6

closed-loop in overlap order. (a) is the crease
pattern, (b) is the folded shapes rendered with
line style, (c) is illustration representation,
and (d) is shaded representation. Figure 8(a)
is an example of one of the best known
Origami pieces, namely, the crane, of which
crease pattern is shown in Figure 2 and Figure
8(b) shows an example in which the texture
image is adopted. It can be seen that our
method works well for rendering flat Origami
regardless of whether it has closed-loops or
not in the overlap order of faces.

6. APPLICATION
ORIPA can export not only the data of
inputted crease pattern but also the folded
shapes. Here we introduce some applications
developed by others that use the data. Figure
9(a) shows an application that simulates
cutting of the folded Origami and shows the
cross lines on the pattern. Figure 9(b) shows
an application[7] that simulates rigid folding
from the crease pattern. Figure 9(c) shows an
application[3] in that user can open the folded
model in virtual 3D.

Figure 6: ORIPA’s windows.
(a) Designing window, (b) validity check

window, (c) folded shape display window,
and (d) rendering window.

 (a) (b)

 (d) (e)

Figure 7: Results. (a) Crease pattern. (b)
Rendered translucently using Java2D API. (c)

Line representation. (d) Illustration
representation. (e) Shaded representation.

 Figure 8: (a) Example of the crane. Left:
Illustration representation. Right: Shaded
representation. (b) Example of the medal
rendered with texture.

(b) (a)

(c) (d)

presented by MITANI, Jun

7

(a)

(b)

(c)

Figure 9: Applications. (a) Simulation of
cutting a folded Origami. (b) Simulation of
Rigid Origami[7]. (c) Interactive Origami
folding on a PC[3].

7. CONCLUSION AND FUTURE WORK
We proposed methods for inputting the

crease patterns, representing the overlap
relations of faces using a matrix, and
rendering the folded shape. We implemented
these features and developed a dedicated
editor, ORIPA. ORIPA can export not only
the crease pattern inputted by the user but also
the folded shape and overlap relations. It
means the data contains full information
about the piece of Origami. Anyone who
makes the importer of the data can rebuild the
model of Origami in his/her application with

this ORIPA. We hope our application could
contribute to future study of Origami. In
future, we aim to add features that enable
users to edit crease pattern and to see the
folded shape at the same time so that ORIPA
could assist designing process of a new work.

REFERENCES
[1] Bern, M., and Hayes, B.: The complexity

of flat origami. In Proc. of the seventh
annual ACM-SIAM symposium on
Discrete algorithms, pp. 175–183, 1996.

[2] Demaine, E., and O’Rourke, J., Geometric
folding algorithms. Cambridge university
press, 2007.

[3] Furuta, Y., Kimoto, H., Mitani, J., and
Fukui, Y. Computer Model and Mouse
Interface for Interactive Virtual Origami
Operation. IPSJ Journal, Vol.48, No.12,
pp.3658-3669, 2007.

[4] Lnag, J. R., Huzita Axioms.
http://www.langorigami.com/science/hha/
hha.php4

[5] Langer, M. S., and Bülthoff, H. H.
Perception of shape from shading on a
cloudy day. Tech. Rep. 17,
Max-Planck-Institut für biologische
Kybernetik, 1999.

[6] Mitani, J. ORIPA; Origami Pattern Editor.
http://mitani.cs.tsukuba.ac.jp/pukiwiki-ori
pa/.

[7] Tachi, T. Simulation of Rigid Origami. In
Proc. of 4OSME, 2006.

ABOUT THE AUTHORS
1. Jun Mitani, Ph.D. is a lecturer at the

Department of Computer Science at the
University of Tsukuba, Japan, and a
researcher of the PRESTO, Japan Science
and Technology Agency. His research
interests are Computer Graphics and
Geometric Modeling. He can be reached
by e-mail: mitani@cs.tsukuba.ac.jp or
through postal address: 1-1-1 Tennohdai,
Tsukuba 305-8573, Japan.

presented by MITANI, Jun

